浏览全部资源
扫码关注微信
北京化工大学化学工程学院 有机无机复合材料国家重点实验室 北京 100029
Zhi-yong Ma, E-mail: mazhy@mail.buct.edu.cn
Published:20 October 2023,
Published Online:21 July 2023,
Received:01 April 2023,
Accepted:09 June 2023
扫 描 看 全 文
张兴达,付晓华,戴光阔等.基于菲咔唑的超长有机室温磷光高分子薄膜[J].高分子学报,2023,54(10):1624-1631.
Zhang Xing-da,Fu Xiao-hua,Dai Guang-kuo,et al.Ultralong Organic Room Temperature Phosphorescence Polymer Films Based on 9H-Dibenzo[a,c]carbazole[J].ACTA POLYMERICA SINICA,2023,54(10):1624-1631.
张兴达,付晓华,戴光阔等.基于菲咔唑的超长有机室温磷光高分子薄膜[J].高分子学报,2023,54(10):1624-1631. DOI: 10.11777/j.issn1000-3304.2023.23087.
Zhang Xing-da,Fu Xiao-hua,Dai Guang-kuo,et al.Ultralong Organic Room Temperature Phosphorescence Polymer Films Based on 9H-Dibenzo[a,c]carbazole[J].ACTA POLYMERICA SINICA,2023,54(10):1624-1631. DOI: 10.11777/j.issn1000-3304.2023.23087.
设计合成了一种新的有机磷光基元(菲咔唑),并掺杂进不同的高分子材料制备成薄膜.研究结果表明掺杂聚乙烯醇(PVA)薄膜有着磷光发射强度大、磷光寿命长(
τ
= 2.12 s)、磷光量子产率高(
Φ
p
=7.95%)等优点. 离子自由基通过形成电荷分离态参与了超长磷光的发射过程. 相较于掺杂聚甲基丙烯酸甲酯(PMMA)薄膜,掺杂PVA薄膜呈现更明显的长余晖,这是由于PVA薄膜提供了更加刚性的环境,磷光基元与PVA分子间相互作用力极大增强,从而促进了电荷分离态的形成,减少了分子运动引起的非辐射耗散及薄膜中氧气对三线态激子的淬灭.此外,掺杂PVA薄膜具有水刺激响应性质,在水的刺激下可以发生磷光性能的改变,因此可应用于信息加密、湿度检测等场景.
Benzocarbazole and its derivatives have excellent ultralong organic room temperature phosphorescence (RTP) properties. Polymer films can help benzocarbazole molecules achieve better phosphorescence performance. In this paper
a new organic phosphorescence unit named 9
H
-dibenzo[a
c]carbazole (CzNPh) is designed and synthesized
and thin films are prepared by using different polymer materials. Compared with the doped poly(methyl methacrylate) (PMMA) films
the doped poly(vinyl alcohol) (PVA) films of CzNPh have higher phosphorescence intensity
longer phosphorescence lifetime (
τ
= 2.12 s)
higher phosphorescence quantum yield (
Φ
p
=7.95%). Radical ions participate in formation of charge separation states and are involved in the emitting process of ultralong phosphorescence. Rigid environment in PVA films and enhanced interactions between CzNPh and PVA facilitate formation of charge separation states and reduce non-radiative transition caused by molecular motion and the quenching of triplet excitons by oxygen. In addition
CzNPh@PVA films can also realize the stimulation response to water because water can damage the interactions between CzNPh and PVA
so CzNPh@PVA films can be applied in information encryption
humidity detection
etc
.
菲咔唑超长室温磷光聚乙烯醇薄膜自由基水响应
9H-Dibenzo[ac]carbazoleRoom-temperature ultralong phosphorescencePoly(vinyl alcohol) polymer filmFree radicalWater-responsive
Hong G.; Gan X. M.; Leonhardt C.; Zhang Z.; Seibert J.; Busch J. M.; Bräse S. A brief history of OLEDs—emitter development and industry milestones. Adv. Mater., 2021, 33(9), 2005630. doi:10.1002/adma.202005630http://dx.doi.org/10.1002/adma.202005630
Zhang X.; Qian C.; Ma Z. M.; Fu X. H.; Li Z. W.; Jin H. W.; Chen M. X.; Jiang H.; Ma Z. Y. A class of organic units featuring matrix-controlled color-tunable ultralong organic room temperature phosphorescence. Adv. Sci., 2023, 10(3), 2206482. doi:10.1002/advs.202206482http://dx.doi.org/10.1002/advs.202206482
Qian C.; Ma Z. M.; Yang B. X.; Li X. J.; Sun J. Y.; Li Z. W.; Jiang H.; Chen M. X.; Jia X. R.; Ma Z. Y. Carbazole&benzoindole-based purely organic phosphors: a comprehensive phosphorescence mechanism, tunable lifetime and an advanced encryption system. J. Mater. Chem. C, 2021, 9(40), 14294-14302. doi:10.1039/d1tc03020ehttp://dx.doi.org/10.1039/d1tc03020e
He Z. H.; Gao H. Q.; Zhang S. T.; Zheng S. Y.; Wang Y. Z.; Zhao Z. H.; Ding D.; Yang B.; Zhang Y. M.; Yuan W. Z. Achieving persistent, efficient, and robust room-temperature phosphorescence from pure organics for versatile applications. Adv. Mater., 2019, 31(18), 1807222. doi:10.1002/adma.201807222http://dx.doi.org/10.1002/adma.201807222
Wang C.; Zhang Y. F.; Wang Z. H.; Zheng Y.; Zheng X.; Gao L.; Zhou Q.; Hao J. Q.; Pi B. X.; Li Q. K.; Yang C. L.; Li Y. B.; Wang K. T.; Zhao Y. L. Photo-induced dynamic room temperature phosphorescence based on triphenyl phosphonium containing polymers. Adv. Funct. Mater., 2022, 32(18), 2111941. doi:10.1002/adfm.202111941http://dx.doi.org/10.1002/adfm.202111941
Wang Y. S.; Gao H. Q.; Yang J.; Fang M. M.; Ding D.; Tang B. Z.; Li Z. High performance of simple organic phosphorescence host-guest materials and their application in time-resolved bioimaging. Adv. Mater., 2021, 33(18), 2007811. doi:10.1002/adma.202007811http://dx.doi.org/10.1002/adma.202007811
Ding B. B.; Ma L. W.; Huang Z. Z.; Ma X.; Tian H. Engendering persistent organic room temperature phosphorescence by trace ingredient incorporation. Sci. Adv., 2021, 7(19), eabf9668. doi:10.1126/sciadv.abf9668http://dx.doi.org/10.1126/sciadv.abf9668
Li J. N.; Zhang L. T.; Wu C. L.; Huang Z. H.; Li S. F.; Zhang H. Q.; Yang Q. C.; Mao Z.; Luo S. L.; Liu C.; Shi G.; Xu B. J. Switchable and highly robust ultralong room-temperature phosphorescence from polymer-based transparent films with three-dimensional covalent networks for erasable light printing. Angew. Chem. Int. Ed., 2023, 62(7), e202217284. doi:10.1002/anie.202217284http://dx.doi.org/10.1002/anie.202217284
Mei D. F.; Yan L. B.; Liu X. R.; Zhao L.; Wang S. M.; Tian H. K.; Ding J. Q.; Wang L. X. De novo design of single white-emitting polymers based on one chromophore with multi-excited states. Chem. Eng. J., 2022, 446, 137004. doi:10.1016/j.cej.2022.137004http://dx.doi.org/10.1016/j.cej.2022.137004
Liu X. R.; Yang L. Q.; Li X. F.; Zhao L.; Wang S. M.; Lu Z. H.; Ding J. Q.; Wang L. X. An electroactive pure organic room-temperature phosphorescence polymer based on a donor-oxygen-acceptor geometry. Angew. Chem. Int. Ed., 2021, 60(5), 2455-2463. doi:10.1002/anie.202011957http://dx.doi.org/10.1002/anie.202011957
Chen C. J.; Chi Z. G.; Chong K. C.; Batsanov A. S.; Yang Z.; Mao Z.; Yang Z. Y.; Liu B. Carbazole isomers induce ultralong organic phosphorescence. Nat. Mater., 2021, 20(2), 175-180. doi:10.1038/s41563-020-0797-2http://dx.doi.org/10.1038/s41563-020-0797-2
Qian C.; Ma Z. M.; Fu X. H.; Zhang X.; Li Z. W.; Jin H. W.; Chen M. X.; Jiang H.; Jia X. R.; Ma Z. Y. More than carbazole derivatives activate room temperature ultralong organic phosphorescence of benzoindole derivatives. Adv. Mater., 2022, 34(19), 2200544. doi:10.1002/adma.202200544http://dx.doi.org/10.1002/adma.202200544
Fu X. H.; Zhang X. E.; Qian C.; Ma Z. M.; Li Z. W.; Jiang H.; Ma Z. Y. A readily obtained alternative to 1H-benzo[f]indole toward room-temperature ultralong organic phosphorescence. Chem. Mater., 2023, 35(1), 347-357. doi:10.1021/acs.chemmater.2c03484http://dx.doi.org/10.1021/acs.chemmater.2c03484
Zhang Y. F.; Su Y.; Wu H. W.; Wang Z. H.; Wang C.; Zheng Y.; Zheng X.; Gao L.; Zhou Q.; Yang Y.; Chen X. H.; Yang C. L.; Zhao Y. L. Large-area, flexible, transparent, and long-lived polymer-based phosphorescence films. J. Am. Chem. Soc., 2021, 143(34), 13675-13685. doi:10.1021/jacs.1c05213http://dx.doi.org/10.1021/jacs.1c05213
Wang D. L.; Gong J. Y.; Xiong Y.; Wu H. Z.; Zhao Z.; Wang D.; Tang B. Z. Achieving color-tunable and time-dependent organic long persistent luminescence via phosphorescence energy transfer for advanced anti-counterfeiting. Adv. Funct. Mater., 2023, 33(1), 2208895. doi:10.1002/adfm.202208895http://dx.doi.org/10.1002/adfm.202208895
Tian R.; Xu S. M.; Xu Q.; Lu C. Large-scale preparation for efficient polymer-based room-temperature phosphorescence via click chemistry. Sci. Adv., 2020, 6(21), eaaz6107. doi:10.1126/sciadv.aaz6107http://dx.doi.org/10.1126/sciadv.aaz6107
Wang Y. S.; Yang J.; Fang M. M.; Gong Y. X.; Ren J.; Tu L. J.; Tang B. Z.; Li Z. New phenothiazine derivatives that exhibit photoinduced room-temperature phosphorescence. Adv. Funct. Mater., 2021, 31(40), 2101719. doi:10.1002/adfm.202101719http://dx.doi.org/10.1002/adfm.202101719
Wang Z. H.; Zhang Y. F.; Wang C.; Zheng X.; Zheng Y.; Gao L.; Yang C. L.; Li Y. B.; Qu L. J.; Zhao Y. L. Color-tunable polymeric long-persistent luminescence based on polyphosphazenes. Adv. Mater., 2020, 32(7), 1907355. doi:10.1002/adma.201907355http://dx.doi.org/10.1002/adma.201907355
Zhang Y. F.; Gao L.; Zheng X.; Wang Z. H.; Yang C. L.; Tang H. L.; Qu L. J.; Li Y. B.; Zhao Y. L. Ultraviolet irradiation-responsive dynamic ultralong organic phosphorescence in polymeric systems. Nat. Commun., 2021, 12, 2297. doi:10.1038/s41467-021-22609-yhttp://dx.doi.org/10.1038/s41467-021-22609-y
Baroncini M.; Bergamini G.; Ceroni P. Rigidification or interaction-induced phosphorescence of organic molecules. Chem. Commun., 2017, 53(13), 2081-2093. doi:10.1039/c6cc09288hhttp://dx.doi.org/10.1039/c6cc09288h
Yao X. K.; Ma H. L.; Wang X.; Wang H.; Wang Q.; Zou X.; Song Z. C.; Jia W. Y.; Li Y. X.; Mao Y. F.; Singh M.; Ye W. P.; Liang J.; Zhang Y. Y.; Liu Z.; He Y. X.; Li J. J.; Zhou Z. X.; Zhao Z.; Zhang Y.; Niu G. W.; Yin C. Z.; Zhang S. S.; Shi H. F.; Huang W.; An Z. F. Ultralong organic phosphorescence from isolated molecules with repulsive interactions for multifunctional applications. Nat. Commun., 2022, 13, 4890. doi:10.1038/s41467-022-32029-1http://dx.doi.org/10.1038/s41467-022-32029-1
Li D.; Yang J. E.; Fang M. M.; Tang B. Z.; Li Z. Stimulus-responsive room temperature phosphorescence materials with full-color tunability from pure organic amorphous polymers. Sci. Adv., 2022, 8(8), eabl8392. doi:10.1126/sciadv.abl8392http://dx.doi.org/10.1126/sciadv.abl8392
0
Views
22
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution