浏览全部资源
扫码关注微信
大连理工大学化工学院高分子材料系 精细化工国家重点实验室 大连 116024
Fang Guo, E-mail: guofang@dlut.edu.cn
Published:20 November 2023,
Published Online:15 June 2023,
Received:07 April 2023,
Accepted:28 April 2023
扫 描 看 全 文
王胤然,赵泽鹏,侯召民等.溴化聚烯烃橡胶的合成研究[J].高分子学报,2023,54(11):1729-1739.
Wang Yin-ran,Zhao Ze-peng,Hou Zhao-min,et al.Synthesis of Brominated Polyolefin Rubbers[J].Acta Polymerica Sinica,2023,54(11):1729-1739.
王胤然,赵泽鹏,侯召民等.溴化聚烯烃橡胶的合成研究[J].高分子学报,2023,54(11):1729-1739. DOI: 10.11777/j.issn1000-3304.2023.23094.
Wang Yin-ran,Zhao Ze-peng,Hou Zhao-min,et al.Synthesis of Brominated Polyolefin Rubbers[J].Acta Polymerica Sinica,2023,54(11):1729-1739. DOI: 10.11777/j.issn1000-3304.2023.23094.
考察了限定几何构型(CGC)钪配合物{Flu-(CH
2
)
3
-NHC}Sc(CH
2
SiMe
3
)
2
催化10-溴-1-癸烯(BrDC)与丙烯、乙烯两元及三元共聚合的性能,获得了一系列溴化聚烯烃橡胶,通过核磁共振波谱(NMR)、凝胶渗透色谱(GPC)和示差扫描量热(DSC)对所获溴化聚烯烃橡胶的结构和热性能进行了分析. 结果表明,室温下CGC钪催化BrDC均聚合60 min,即以91%的收率获得高分子量(
M
n
= 6.5×10
4
g·mol
-1
)的无规聚合物. 在0.2 MPa的丙烯压力下,CGC钪对BrDC和丙烯共聚合也表现出了极高的催化活性(10
6
g聚合物·mol
Sc
-1
·h
-1
),通过改变BrDC用量,获得了BrDC含量在1.1 mol%~18.0 mol%间调控的高分子量(
M
n
= 1.35×10
5
~1.88×10
5
g·mol
-1
)丙烯-BrDC无规共聚物. 丙烯-BrDC无规共聚物中包含孤立分布的BrDC和无规聚丙烯嵌段. 不同组成的丙烯-BrDC共聚物在-7~-33 ℃范围内具有一个玻璃化转变温度(
T
g
). 该CGC钪对乙烯、丙烯和BrDC三元共聚合也表现出了极高的催化活性(10
6
g聚合物·mol
Sc
-1
·h
-1
),获得了组成可控、高分子量(
M
n
= 2.31×10
5
~3.27×10
5
g·mol
-1
)的乙烯-丙烯-BrDC三元无规共聚物. 不同组成的三元共聚物在-43~-59 ℃范围内具有一个
T
g
,当三元共聚物中乙烯含量高于67.0 mol%时三元共聚物具有一个约100 ℃的熔点.
The copolymerization of 10-bromo-1-decene (BrDC) with propylene and ethylene by the constrained geometry scandium complex {Flu-(CH
2
)
3
-NHC}Sc(CH
2
SiMe
3
)
2
was examined. The microstructures and thermal properties of the obtained polymers were characterized by NMR
GPC and DSC. The polymerization of BrDC within 60 min at room temperature afforded atactic homopolymer with high molecular weight (
M
n
= 6.50×10
4
g·mol
-1
) in 91% yield. The copolymerization of BrDC and propylene under 0.2 MPa of propylene was also successfully achieved at room temperature. The copolymerization activity reached up to 10
6
g of polymer·(mol of Sc)
-1
·h
-1
. The propylene-BrDC copolymers with controllable compositions (BrDC content = 1.1 mol%‒18.0 mol%)
high molecular weight (
M
n
= 1.35×10
5
‒1.88×10
5
) were conveniently obtained by changing the feed of BrDC. The random propylene-BrDC copolymers contained isolated BrDC and atactic polypropylene blocks. The propylene-BrDC copolymers with different compositions possessed glass transition temperatures (
T
g
) in the range from -7 ℃ to -33 ℃. The scandium complex also showed high activity (10
6
g of polymer·(mol of Sc)
-1
·h
-1
) for the terpolymerization of BrDC with propylene and ethylene. The random ethylene-propylene-BrDC copolymers with controllable compositions (ethylene content = 37.8 mol%‒75.2 mol%
BrDC content = 2.3 mol%‒12.2 mol%) and high molecular weight (
M
n
= 2.31×10
5
‒3.27×10
5
) were obtained at room temperature. The ethylene-propylene-BrDC terpolymers with different compositions possessed glass transition temperatures (
T
g
) in the range from -43 ℃ to -59 ℃. When the ethylene content was higher than 67.0 mol%
the ethylene-propylene-BrDC terpolymers showed a melting point of 100 ℃.
钪橡胶聚烯烃共聚合溴化
ScandiumRubberPolyolefinCopolymerizationBrominated
Franssen N. M. G.; Reek J. N. H.; de Bruin B. Synthesis of functional ‘polyolefins’: state of the art and remaining challenges. Chem. Soc. Rev., 2013, 42(13), 5809-5832. doi:10.1039/c3cs60032ghttp://dx.doi.org/10.1039/c3cs60032g
Mike Chung T. C. Functional polyolefins for energy applications. Macromolecules, 2013, 46(17), 6671-6698. doi:10.1021/ma401244thttp://dx.doi.org/10.1021/ma401244t
Yoon J.; Hashim A. S.; Kawabata N.; Kohjiya S. Blends of brominated EPDM and NR. Rubber World, 1996, 213, 20-21.
Lewis C.; Bunyung S.; Kiatkamjornwong S. Rheological properties and compatibility of NR/EPDM and NR/brominated EPDM blends. J. Appl. Polym. Sci., 2003, 89(3), 837-847. doi:10.1002/app.12329http://dx.doi.org/10.1002/app.12329
Dontsov A. A.; Novitskaya S. P.; Dogadkin B. A. Study of sulfur vulcanization of brominated ethylene-propylene rubber. Rubber Chem. Technol., 1971, 44(3), 721-727. doi:10.5254/1.3544788http://dx.doi.org/10.5254/1.3544788
Zhang M.; Liu J. L.; Wang Y. G.; An L. N.; Guiver M. D.; Li N. W. Highly stable anion exchange membranes based on quaternized polypropylene. J. Mater. Chem. A, 2015, 3(23), 12284-12296. doi:10.1039/c5ta01420dhttp://dx.doi.org/10.1039/c5ta01420d
Wang X. Y.; Li Y. G.; Mu H. L.; Pan L.; Li Y. S. Efficient synthesis of diverse well-defined functional polypropylenes with high molecular weights and high functional group contents via thiol-halogen click chemistry. Polym. Chem., 2015, 6(7), 1150-1158. doi:10.1039/c4py01350fhttp://dx.doi.org/10.1039/c4py01350f
Barlow T. R.; Brendel J. C.; Perrier S. Poly(bromoethyl acrylate): a reactive precursor for the synthesis of functional RAFT materials. Macromolecules, 2016, 49(17), 6203-6212. doi:10.1021/acs.macromol.6b00721http://dx.doi.org/10.1021/acs.macromol.6b00721
Hoyle C. E.; Lowe A. B.; Bowman C. N. Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem. Soc. Rev., 2010, 39(4), 1355-1387. doi:10.1039/b901979khttp://dx.doi.org/10.1039/b901979k
Sukhareva K. V.; Mikhailov I. A.; Andriasyan Y. O.; Popov A. A. Investigation of chlorinated modifier content influence on the physical-mechanical properties and vulcanizing characteristics of rubber and rubber mixture. IOP Conf. Ser.: Mater. Sci. Eng., 2017, 286, 012004. doi:10.1088/1757-899x/286/1/012004http://dx.doi.org/10.1088/1757-899x/286/1/012004
Jois Y. H. R.; Harrison J. B. Modification of polyolefins: an overview. J. Macromol. Sci. C Polym. Rev., 1996, 36(3), 433-455. doi:10.1080/15321799608009646http://dx.doi.org/10.1080/15321799608009646
Bacskai R. Copolymerization of α-olefins with ω-halo-α-olefins by use of Ziegler catalysts. J. Polym. Sci. A Gen. Pap., 1965, 3(7), 2491-2510. doi:10.1002/pol.1965.100030708http://dx.doi.org/10.1002/pol.1965.100030708
Nomura K.; Zhang S. Design of vanadium complex catalysts for precise olefin polymerization. Chem. Rev., 2011, 111(3), 2342-2362. doi:10.1021/cr100207hhttp://dx.doi.org/10.1021/cr100207h
Galimberti M.; Giannini U.; Albizzati E.; Caldari S.; Abis L. Functionalized polymers from Ziegler-Natta catalysts. J. Mol. Catal. A Chem., 1995, 101(1), 1-10. doi:10.1016/1381-1169(95)00046-1http://dx.doi.org/10.1016/1381-1169(95)00046-1
Zhao P.; Shpasser D.; Eisen M. S. Copolymerizations of propylene with functionalized long-chain α-olefins using group 4 organometallic catalysts and their membrane application. J. Polym. Sci. A Polym. Chem., 2012, 50(3), 523-533. doi:10.1002/pola.25060http://dx.doi.org/10.1002/pola.25060
Chen C. L. Designing catalysts for olefin polymerization and copolymerization: beyond electronic and steric tuning. Nat. Rev. Chem., 2018, 2(5), 6-14. doi:10.1038/s41570-018-0003-0http://dx.doi.org/10.1038/s41570-018-0003-0
Tan C.; Chen C. L. Emerging palladium and nickel catalysts for copolymerization of olefins with polar monomers. Angew. Chem. Int. Ed., 2019, 58(22), 7192-7200. doi:10.1002/anie.201814634http://dx.doi.org/10.1002/anie.201814634
Wang X. Y.; Wang Y. X.; Shi X. C.; Liu J. Y.; Chen C. L.; Li Y. S. Syntheses of well-defined functional isotactic polypropylenes via efficient copolymerization of propylene with ω-halo-α-alkenes by post-metallocene hafnium catalyst. Macromolecules, 2014, 47(2), 552-559. doi:10.1021/ma4022696http://dx.doi.org/10.1021/ma4022696
Wang J.; He L.; Nan F.; Wang F.; Li H. M.; Wang J. J.; Liu D.; Lei M.; Li L. F.; Huang Q. G.; Yang W. T. Investigation on terpolymer of ethylene/propylene/ω-bromo-α-olefins catalyzed by titanium complexes.J. Mater. Sci., 2017, 52(10), 5981-5991. doi:10.1007/s10853-017-0834-yhttp://dx.doi.org/10.1007/s10853-017-0834-y
Luckham S. L. J.; Nozaki K. Toward the copolymerization of propylene with polar comonomers. Acc. Chem. Res., 2021, 54(2), 344-355. doi:10.1021/acs.accounts.0c00628http://dx.doi.org/10.1021/acs.accounts.0c00628
Mu H. L.; Ye J. H.; Zhou G. L.; Li K. K.; Jian Z. B. Ethylene polymerization and copolymerization with polar monomers by benzothiophene-bridged BPMO-Pd catalysts. Chinese J. Polym. Sci., 2020, 38(6), 579-586. doi:10.1007/s10118-020-2359-0http://dx.doi.org/10.1007/s10118-020-2359-0
Nishiura M.; Guo F.; Hou Z. M. Half-sandwich rare-earth-catalyzed olefin polymerization, carbometalation, and hydroarylation. Acc. Chem. Res., 2015, 48(8), 2209-2220. doi:10.1021/acs.accounts.5b00219http://dx.doi.org/10.1021/acs.accounts.5b00219
Nishiura M.; Hou Z. M. Novel polymerization catalysts and hydride clusters from rare-earth metal dialkyls. Nat. Chem., 2010, 2(4), 257-268. doi:10.1038/nchem.595http://dx.doi.org/10.1038/nchem.595
崔冬梅. 稀土催化极性单体配位均聚及与非极性单体共聚合的研究. 高分子学报, 2020, 51(1), 12-29. doi:10.11777/j.issn1000-3304.2020.19142http://dx.doi.org/10.11777/j.issn1000-3304.2020.19142
Li S. H.; Liu D. T.; Wang Z. C.; Cui D. M. Development of group 3 catalysts for alternating copolymerization of ethylene and styrene derivatives. ACS Catal., 2018, 8(7), 6086-6093. doi:10.1021/acscatal.8b00885http://dx.doi.org/10.1021/acscatal.8b00885
Wang T. T.; Wu C. J.; Ji X. L.; Cui D. M. Direct synthesis of functional thermoplastic elastomer with excellent mechanical properties by scandium-catalyzed copolymerization of ethylene and fluorostyrenes. Angew. Chem. Int. Ed., 2021, 60(49), 25735-25740. doi:10.1002/anie.202111184http://dx.doi.org/10.1002/anie.202111184
Wang T. T.; Wu C. J.; Wang B. L.; Cui D. M. Isospecific alternating copolymerization of unprotected polar styrenes and ethylene by the Cs symmetric scandium precursor via synergistic effects of two substituent groups. Giant, 2021, 7, 100061. doi:10.1016/j.giant.2021.100061http://dx.doi.org/10.1016/j.giant.2021.100061
仇春阳, 郭方, 李杨, 侯召民. 单茂钪催化乙烯与苯乙烯衍生物共聚合的研究. 高分子学报, 2016, (12), 1662-1668. doi:10.11777/j.issn1000-3304.2016.16106http://dx.doi.org/10.11777/j.issn1000-3304.2016.16106
焦娜, 郭方, 李杨. 单茂钪催化对氟苯乙烯间规聚合及与乙烯共聚合的研究. 高分子学报, 2017, (12), 1922-1929. doi:10.11777/j.issn1000-3304.2017.17051http://dx.doi.org/10.11777/j.issn1000-3304.2017.17051
Zhang Z.; Jiang Y.; Lei R.; Zhang Y. F.; Li S. H.; Cui D. M. Proximity-driven synergic copolymerization of ethylene and polar monomers. Macromolecules, 2023, 56(6), 2476-2483. doi:10.1021/acs.macromol.2c02337http://dx.doi.org/10.1021/acs.macromol.2c02337
Pan Y.; Xu T. Q.; Fu S.; Yang G. W.; Lu X. B. Remarkable stereochemistry control in the polymerization of α-olefins using a simple scandium catalyst system. Macromolecules, 2013, 46(22), 8790-8796. doi:10.1021/ma401840fhttp://dx.doi.org/10.1021/ma401840f
Wang C. X.; Luo G.; Nishiura M.; Song G. Y.; Yamamoto A.; Luo Y.; Hou Z. M. Heteroatom-assisted olefin polymerization by rare-earth metal catalysts. Sci. Adv., 2017, 3(7), e1701011. doi:10.1126/sciadv.1701011http://dx.doi.org/10.1126/sciadv.1701011
林秀崇, 王胤然, 姜磊, 郭方. 含“Si―H”基团聚乙烯的合成及功能化研究. 高分子学报, 2020, 51(7), 771-776. doi:10.11777/j.issn1000-3304.2020.20023http://dx.doi.org/10.11777/j.issn1000-3304.2020.20023
Wang Y. R.; Jiang L.; Ren X. R.; Guo F.; Hou Z. M. Synthesis of bromine-functionalized polyolefins by scandium-catalyzed copolymerization of 10-bromo-1-decene with ethylene, propylene, and dienes. J. Polym. Sci., 2021, 59(20), 2324-2333. doi:10.1002/pol.20210488http://dx.doi.org/10.1002/pol.20210488
Tan R.; Guo F.; Li Y. Copolymerization of propylene with styrene and ethylene by a THF-containing half-sandwich scandium catalyst: Efficient synthesis of polyolefins with a controllable styrene content. Polym. Chem., 2017, 8(3), 615-623. doi:10.1039/c6py01665khttp://dx.doi.org/10.1039/c6py01665k
Luo Y. J.; Hou Z. M. Polymerization of 1-hexene and copolymerization of ethylene with 1-hexene catalyzed by cationic half-sandwich scandium alkyls. Stud. Surf. Sci. Catal., 2006, 161, 95-104. doi:10.1016/s0167-2991(06)80439-8http://dx.doi.org/10.1016/s0167-2991(06)80439-8
Wang Y. R.; Huang L.; Hou Z. M.; Guo F. Polymerization of α-olefins and their copolymerization with ethylene by half-sandwich scandium catalysts with an N-heterocyclic carbene ligand. Polym. Chem., 2023, 14(7), 828-838. doi:10.1039/d2py01526ahttp://dx.doi.org/10.1039/d2py01526a
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams-Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A., Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J. Gaussian, Inc., Wallingford CT, 2016.
Frost A. A.; Musulin B. A mnemonic device for molecular orbital energies. J. Chem. Phys., 1953, 21(3), 572-573. doi:10.1063/1.1698970http://dx.doi.org/10.1063/1.1698970
Perdew J. P.; Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 1992, 45(23), 13244-13249. doi:10.1103/physrevb.45.13244http://dx.doi.org/10.1103/physrevb.45.13244
Perdew J. P.; Burke K.; Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B, 1996, 54(23), 16533-16539. doi:10.1103/physrevb.54.16533http://dx.doi.org/10.1103/physrevb.54.16533
Dolg M.; Wedig U.; Stoll H.; Preuss H. Energy-adjusted ab initio pseudopotentials for the first row transition elements. J. Chem. Phys., 1987, 86(2), 866-872. doi:10.1063/1.452288http://dx.doi.org/10.1063/1.452288
Dolg M.; Stoll H.; Savin A.; Preuss H. Energy-adjusted pseudopotentials for the rare earth elements. J. Chem. Phys., 1989, 90, 1730-1734. doi:10.1007/bf00528565http://dx.doi.org/10.1007/bf00528565
Höllwarth A.; Böhme M.; Dapprich S.; Ehlers A. W.; Gobbi A.; Jonas V.; Köhler K. F.; Stegmann R.; Veldkamp A.; Frenking G. A set of d-polarization functions for pseudo-potential basis sets of the main group elements Al-Bi and f-type polarization functions for Zn, Cd, Hg. Chem. Phys. Lett., 1993, 208(3-4), 237-240. doi:10.1016/0009-2614(93)89068-shttp://dx.doi.org/10.1016/0009-2614(93)89068-s
Zhao Y.; Truhlar D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc., 2008, 120(1-3), 215-241. doi:10.1007/s00214-007-0310-xhttp://dx.doi.org/10.1007/s00214-007-0310-x
Luo Y. J.; Baldamus J.; Hou Z. M. Scandium half-metallocene-catalyzed syndiospecific styrene polymerization and styrene-ethylene copolymerization: unprecedented incorporation of syndiotactic styrene-styrene sequences in styrene-ethylene copolymers. J. Am. Chem. Soc., 2004, 126(43), 13910-13911. doi:10.1021/ja046063phttp://dx.doi.org/10.1021/ja046063p
0
Views
30
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution