浏览全部资源
扫码关注微信
天津大学材料科学与工程学院 天津 300350
Li Pan, E-mail: lilypan@tju.edu.cn
Published:20 November 2023,
Published Online:30 June 2023,
Received:12 April 2023,
Accepted:11 May 2023
扫 描 看 全 文
刘炬阳,高欢,王菲等.链穿梭共聚合制备环烯烃多嵌段共聚物[J].高分子学报,2023,54(11):1708-1719.
Liu Ju-yang,Gao Huan,Wang Fei,et al.Chain Shuttling Copolymerization for Synthesis of Multi-block Cyclic Olefin Copolymers[J].Acta Polymerica Sinica,2023,54(11):1708-1719.
刘炬阳,高欢,王菲等.链穿梭共聚合制备环烯烃多嵌段共聚物[J].高分子学报,2023,54(11):1708-1719. DOI: 10.11777/j.issn1000-3304.2023.23100.
Liu Ju-yang,Gao Huan,Wang Fei,et al.Chain Shuttling Copolymerization for Synthesis of Multi-block Cyclic Olefin Copolymers[J].Acta Polymerica Sinica,2023,54(11):1708-1719. DOI: 10.11777/j.issn1000-3304.2023.23100.
乙烯和降冰片烯(NB)的共聚物是最具代表性的环烯烃共聚物(COC). 更多NB的引入赋予了COC优异的力学强度、透明度和耐热性的同时,也使COC变得更脆. 为了在保持COC高强度、透明度和耐热性的同时改善其脆性,优选了2种聚合活性相近,对NB选择性不同的催化剂Ph
2
C(Cp)(9-Ind)ZrCl
2
和Et(Ind)
2
ZrCl
2
,在相同的条件下可分别合成高降冰片烯插入率COC与低降冰片烯插入率COC,以二乙基锌为链转移剂,实现了降冰片烯与乙烯聚合的链穿梭共聚反应,获得了同时含有高NB插入率的COC链段和低NB插入率的COC链段的多嵌段共聚物. 通过改变二乙基锌用量、初始单体比来实现对多嵌段COC分子量和结构调控. 热力学、拉伸性能和透光性测试证明多嵌段COC与无规COC相比,不仅实现了韧性的明显提升(断裂伸长率从
<
5%提高至10%~11%),而且保持了高的强度、耐热性和透光度.
The copolymer of ethylene and norbornene (NB) is the most representative cyclic olefin copolymer (COC). Introduction of NB imparts excellent strength
transparency
and heat resistance to COC
and it also makes it more brittle
which limits its application in many fields. Therefore
improving the toughness of COC while maintaining its excellent characteristics such as high strength
heat resistance
and transparency is a critical challenge. To address this challenge
this study optimized two catalysts
Ph
2
C(Cp)(9-Ind)ZrCl
2
and Et(Ind)
2
ZrCl
2
which exhibit comparable polymerization activity but different selectivities toward NB in the E/NB copolymerization. We studied the coordination chain transfer polymerization of two catalysts under different polymerization conditions to verify the reversibility of chain transfer of the two catalysts in E/NB copolymerization. Based on this
chain shuttling copolymerization of ethylene and norbornene by adopting a dual-catalyst system and Et
2
Zn as a chain shuttling agent was successfully achieved. The multiblock structure of the chain shuttling copolymers with both high and low NB incorporation in COC segments was further revealed by
13
C-NMR spectra
GPC and DSC analyses. The molecular weight and composition of the multiblock COCs could be easily regulated by varying the amount of Et
2
Zn and initial monomer ratio. Thermodynamic
tensile
and light transmittance tests demonstrated that the multiblock COCs bearing significantly enhanced toughness (
i.e.
elongation at break increases from
<
5% to 10%-11%) compared to those of the random COC by single catalyst
while maintaining high strength
heat resistance
and light transmittance. In summary
a series of multiblock COCs were efficiently prepared
via
chain shuttling copolymerization by using a dual-catalyst system. As expected
these COCs exhibited enhanced toughness while maintaining high thermal resistance
mechanical strength
and transparency. This study offers a new solution for improving tensile performance while maintaining high heat resistance and transparency of COCs.
环烯烃共聚物链转移聚合多嵌段共聚物链穿梭共聚合
Cyclic olefin copolymerChain transfer polymerizationMultiblock copolymerChain shuttling copolymerization
Okabe M.; Nomura K. Propylene/cyclic olefin copolymers with cyclopentene, cyclohexene, cyclooctene, tricyclo[6.2.1.0(2,7)] undeca-4-ene, and tetracyclododecene: the synthesis and effect of cyclic structure on thermal properties. Macromolecules, 2023, 56(1), 81-91. doi:10.1021/acs.macromol.2c01966http://dx.doi.org/10.1021/acs.macromol.2c01966
Cai Z. G.; Harada R.; Nakayama Y.; Shiono T. Highly active living random copolymerization of norbornene and 1-alkene with ansa-fluorenylamidodimethyltitanium derivative: substituent effects on fluorenyl ligand. Macromolecules, 2010, 43(10), 4527-4531. doi:10.1021/ma1006107http://dx.doi.org/10.1021/ma1006107
Li X. F.; Hou Z. M. Organometallic catalysts for copolymerization of cyclic olefins. Coord. Chem. Rev., 2008, 252(15-17), 1842-1869. doi:10.1016/j.ccr.2007.11.027http://dx.doi.org/10.1016/j.ccr.2007.11.027
Tritto I.; Boggioni L.; Ferro D. R. Metallocene catalyzed ethene- and propene co-norbornene polymerization: mechanisms from a detailed microstructural analysis. Coord. Chem. Rev., 2006, 250(1-2), 212-241. doi:10.1016/j.ccr.2005.06.019http://dx.doi.org/10.1016/j.ccr.2005.06.019
Yuan H. B.; Kida T.; Kim H.; Tanaka R.; Cai Z. G.; Nakayama Y.; Shiono T. Synthesis and properties of gradient copolymers composed of norbornene and higher α-olefins using an ansa-fluorenylamidodimethyltitanium-[Ph3C][B(C6F5)4]systemcatalyst. Macromolecules, 2020, 53(11), 4323-4329.
Li Y. L.; Yang J. X.; Wang B.; Li Y. S. Efficient copolymerization of ethylene with norbornene or its derivatives using half-metallocene zirconium (IV) catalysts. RSC Adv., 2016, 6(64), 59590-59599. doi:10.1039/c6ra11501bhttp://dx.doi.org/10.1039/c6ra11501b
Tritto I.; Boggioni L.; Zampa C.; Ferro D. R. Ethylene-norbornene copolymers by Cs-symmetric metallocenes: determination of the copolymerization parameters and mechanistic considerations on the basis of tetrad analysis. Macromolecules, 2005, 38(24), 9910-9919. doi:10.1021/ma051682jhttp://dx.doi.org/10.1021/ma051682j
Pan L.; Ye W. P.; Liu J. Y.; Hong M.; Li Y. S. Efficient, regioselective copolymerization of ethylene with cyclopentadiene by the titanium complexes bearing two β-enaminoketonato ligands. Macromolecules, 2008, 41(9), 2981-2983. doi:10.1021/ma800459rhttp://dx.doi.org/10.1021/ma800459r
Liu J. Y.; Nomura K. Highly efficient ethylene/cyclopentene copolymerization with exclusive 1,2-cyclopentene incorporation by (cyclopentadienyl)(ketimide)titanium(IV) complex-MAO catalysts. Adv. Synth. Catal., 2007, 349(14-15), 2235-2240. doi:10.1002/adsc.200700247http://dx.doi.org/10.1002/adsc.200700247
Harakawa H.; Patamma S.; Boccia A. C.; Boggioni L.; Ferro D. R.; Losio S.; Nomura K.; Tritto I. Ethylene copolymerization with 4-methylcyclohexene or 1-methylcyclopentene by half-titanocene catalysts: effect of ligands and microstructural analysis of the copolymers. Macromolecules, 2018, 51(3), 853-863. doi:10.1021/acs.macromol.7b02484http://dx.doi.org/10.1021/acs.macromol.7b02484
Wang F.; Huang D.; Gao H.; Wang F.; Pan L.; Li Y. S. Synthesis of bimodal distributed cyclic olefin copolymers with improved tensile properties. Chin. J. Chem., 2022, 40(16), 1931-1938. doi:10.1002/cjoc.202200186http://dx.doi.org/10.1002/cjoc.202200186
Natta G.; Dall'Asta G.; Mazzanti G. Stereospecific homopolymerization of cyclopentene. Angew. Chem. Int. Ed., 1964, 3(11), 723-729. doi:10.1002/anie.196407231http://dx.doi.org/10.1002/anie.196407231
Natta G.; Dall'Asta G.; Mazzanti G.; Pasquon I.; Valvassori A.; Zambelli A. Crystalline alternating ethylene-cyclopentene copolymers and other ethylene-cycloolefin copolymers. Makromol. Chem., 1962, 54(1), 95-101. doi:10.1002/macp.1962.020540107http://dx.doi.org/10.1002/macp.1962.020540107
Sinn H.; Kaminsky W.; Vollmer H. J.; Woldt R. Recent progress in olefin polymerization catalyzed by transition metal complexes: new catalysts and new reactions. Angew. Chem., 1980, 19(5), 390-392. doi:10.1002/anie.198003901http://dx.doi.org/10.1002/anie.198003901
Kaminsky W.; Spiehl R. Copolymerization of cycloalkenes with ethylene in presence of chiral zirconocene catalysts. Macromol. Chem. Phys., 1989, 190, 515-526. doi:10.1002/macp.1989.021900308http://dx.doi.org/10.1002/macp.1989.021900308
Kaminsky W.; Steiger R. Polymerization of olefins with homogeneous zirconocene/alumoxane catalysts. Polyhedron, 1988, 7(22-23), 2375-2381. doi:10.1016/s0277-5387(00)86355-xhttp://dx.doi.org/10.1016/s0277-5387(00)86355-x
Park S. Y.; Choi K. Y.; Song K. H.; Jeong B. G. Kinetic modeling of ethylene-norbornene copolymerization using homogeneous metallocene catalysts. Macromolecules, 2003, 36(11), 4216-4225. doi:10.1021/ma034115+http://dx.doi.org/10.1021/ma034115+
Hong M.; Yang G. F.; Long Y. Y.; Yu S. J.; Li Y. S. Preparation of novel cyclic olefin copolymer with high glass transition temperature. J. Polym. Sci. A Polym. Chem., 2013, 51(15), 3144-3152. doi:10.1002/pola.26699http://dx.doi.org/10.1002/pola.26699
Kaminsky W.; Laban, A. Metallocene catalysis. Appl. Catal. A Gen., 2001, 222(1-2), 47-61. doi:10.1016/s0926-860x(01)00829-8http://dx.doi.org/10.1016/s0926-860x(01)00829-8
Dorigato A.; Pegoretti A.; Fambri L.; Lonardi C.; Slouf M.; Kolarik J. Linear low density polyethylene/cycloolefin copolymer blends. Express Polym. Lett., 2011, 5(1), 23-37. doi:10.3144/expresspolymlett.2011.4http://dx.doi.org/10.3144/expresspolymlett.2011.4
Kolařík J.; Kruliš Z.; Šlouf M.; Fambri L. High-density polyethylene/cycloolefin copolymer blends. Part 1: phase structure, dynamic mechanical, tensile, and impact properties. Polym. Eng. Sci., 2005, 45(6), 817-826. doi:10.1002/pen.20337http://dx.doi.org/10.1002/pen.20337
Fambri L.; Kolarik J.; Pegoretti A.; Penati A. Thermal, thermo-mechanical, and dynamic mechanical properties of polypropylene/cycloolefin copolymer blends. J. Appl. Polym. Sci., 2011, 122(5), 3406-3414. doi:10.1002/app.34426http://dx.doi.org/10.1002/app.34426
Ali Khonakdar H.; Jafari S. H.; Hesabi M. N. Miscibility analysis, viscoelastic properties and morphology of cyclic olefin copolymer/polyolefin elastomer (COC/POE) blends. Compos. B Eng., 2015, 69, 111-119. doi:10.1016/j.compositesb.2014.09.034http://dx.doi.org/10.1016/j.compositesb.2014.09.034
Yu S. T.; Na S. J.; Lim T. S.; Lee B. Y. Preparation of a bulky cycloolefin/ethylene copolymer and its tensile properties. Macromolecules, 2010, 43(2), 725-730. doi:10.1021/ma902334dhttp://dx.doi.org/10.1021/ma902334d
Na S. J.; Wu C. J.; Yoo J.; Kim B. E.; Lee B. Y. Copolymerization of 5,6-dihydrodicyclopentadiene and ethylene. Macromolecules, 2008, 41(11), 4055-4057. doi:10.1021/ma800380rhttp://dx.doi.org/10.1021/ma800380r
Park H. C.; Kim A.; Lee B. Y. Preparation of cycloolefin copolymers of a bulky tricyclopentadiene. J. Polym. Sci. A Polym. Chem., 2011, 49(4), 938-944. doi:10.1002/pola.24506http://dx.doi.org/10.1002/pola.24506
Zhao Y. H.; Zhang Y. X.; Cui L.; Jian Z. B. Cyclic olefin terpolymers with high refractive index and high optical transparency. ACS Macro Lett., 2023, 12(3), 395-400. doi:10.1021/acsmacrolett.3c00043http://dx.doi.org/10.1021/acsmacrolett.3c00043
高欢, 邵平均, 李邦, 潘莉. 配位链转移聚合合成高密度聚乙烯-嵌段-等规聚丙烯嵌段共聚物. 高分子学报, 2021, 52(11), 1498-1505. doi:10.11777/j.issn1000-3304.2021.21125http://dx.doi.org/10.11777/j.issn1000-3304.2021.21125
Stürzel M.; Mihan S.; Mülhaupt R. From multisite polymerization catalysis to sustainable materials and all-polyolefin composites. Chem. Rev., 2016, 116(3), 1398-1433. doi:10.1021/acs.chemrev.5b00310http://dx.doi.org/10.1021/acs.chemrev.5b00310
Bates F. S. Polymer-polymer phase behavior. Science, 1991, 251(4996), 898-905. doi:10.1126/science.251.4996.898http://dx.doi.org/10.1126/science.251.4996.898
Coates G. W.; Hustad P. D.; Reinartz S. Catalysts for the living insertion polymerization of alkenes: access to new polyolefin architectures using Ziegler-Natta chemistry. Angew. Chem. Int. Ed., 2002, 41(13), 2236. doi:10.1002/1521-3773(20020703)41:13<2236::aid-anie2236>3.0.co;2-3http://dx.doi.org/10.1002/1521-3773(20020703)41:13<2236::aid-anie2236>3.0.co;2-3
Domski G. J.; Rose J. M.; Coates G. W.; Bolig A. D.; Brookhart M. Living alkene polymerization: new methods for the precision synthesis of polyolefins. Prog. Polym. Sci., 2007, 32(1), 30-92. doi:10.1016/j.progpolymsci.2006.11.001http://dx.doi.org/10.1016/j.progpolymsci.2006.11.001
Arriola D. J.; Carnahan E. M.; Hustad P. D.; Kuhlman R. L.; Wenzel T. T. Catalytic production of olefin block copolymers via chain shuttling polymerization. Science, 2006, 312(5774), 714-719. doi:10.1126/science.1125268http://dx.doi.org/10.1126/science.1125268
Zintl M.; Rieger B. Novel olefin block copolymers through chain-shuttling polymerization. Angew. Chem. Int. Ed., 2007, 46(3), 333-335. doi:10.1002/anie.200602889http://dx.doi.org/10.1002/anie.200602889
Hustad P. D. Frontiers in olefin polymerization: reinventing the world’s most common synthetic polymers. Science, 2009, 325(5941), 704-707. doi:10.1126/science.1174927http://dx.doi.org/10.1126/science.1174927
Chum P. S.; Swogger K. W. Olefin polymer technologies—history and recent progress at the dow chemical company. Prog. Polym. Sci., 2008, 33(8), 797-819. doi:10.1016/j.progpolymsci.2008.05.003http://dx.doi.org/10.1016/j.progpolymsci.2008.05.003
Yin X.; Gao H.; Yang F.; Pan L.; Wang B.; Ma Z.; Li Y. S. Stereoblock polypropylenes prepared by efficient chain shuttling polymerization of propylene with binary zirconium catalysts and iBu3Al. Chinese J. Polym. Sci., 2020, 38(11), 1192-1201. doi:10.1007/s10118-020-2446-2http://dx.doi.org/10.1007/s10118-020-2446-2
Gao H.; Chen S. T.; Du B.; Dai Z. Y.; Lu X.; Zhang K. Y.; Pan L.; Li Y.; Li Y. S. Cyclic olefin copolymers containing both linear polyethylene and poly(ethylene-co-norbornene) segments prepared from chain shuttling copolymerization of ethylene and norbornene. Polym. Chem., 2022, 13(2), 245-257. doi:10.1039/d1py01251ghttp://dx.doi.org/10.1039/d1py01251g
Hustad P. D.; Marchand G. R.; Garcia-Meitin E. I.; Roberts P. L.; Weinhold J. D. Photonic polyethylene from self-assembled mesophases of polydisperse olefin block copolymers. Macromolecules, 2009, 42(11), 3788-3794. doi:10.1021/ma9002819http://dx.doi.org/10.1021/ma9002819
Xiao A. G.; Wang L.; Liu Q. Q.; Yu H. J.; Wang J. J.; Huo J.; Tan Q. H.; Ding J. H.; Ding W. B.; Amin A. M. A novel linear-hyperbranched multiblock polyethylene produced from ethylene monomer alone via chain walking and chain shuttling polymerization. Macromolecules, 2009, 42(6), 1834-1837. doi:10.1021/ma802352thttp://dx.doi.org/10.1021/ma802352t
Auriemma F.; de Rosa C.; Scoti M.; Di Girolamo R.; Malafronte A.; Galotto N. G. Structural investigation at nanometric length scale of ethylene/1-octene multiblock copolymers from chain-shuttling technology. Macromolecules, 2018, 51(23), 9613-9625. doi:10.1021/acs.macromol.8b01947http://dx.doi.org/10.1021/acs.macromol.8b01947
Pan L.; Zhang K. Y.; Nishiura M.; Hou Z. M. Chain-shuttling polymerization at two different scandium sites: regio- and stereospecific one-pot block copolymerization of styrene, isoprene, and butadiene. Angew. Chem. Int. Ed., 2011, 50(50), 12012-12015. doi:10.1002/anie.201104011http://dx.doi.org/10.1002/anie.201104011
Valente A.; Stoclet G.; Bonnet F.; Mortreux A.; Visseaux M.; Zinck P. Isoprene-styrene chain shuttling copolymerization mediated by a lanthanide half-sandwich complex and a lanthanidocene: straightforward access to a new type of thermoplastic elastomers. Angew. Chem. Int. Ed., 2014, 53(18), 4638-4641. doi:10.1002/anie.201311057http://dx.doi.org/10.1002/anie.201311057
Alfano F.; Boone H. W.; Busico V.; Cipullo R.; Stevens J. C. Polypropylene "chain shuttling" at enantiomorphous and enantiopure catalytic species: direct and quantitative evidence from polymer microstructure. Macromolecules, 2007, 40(22), 7736-7738. doi:10.1021/ma7020024http://dx.doi.org/10.1021/ma7020024
Liu B.; Cui D. M. Regioselective chain shuttling polymerization of isoprene: an approach to access new materials from single monomer. Macromolecules, 2016, 49(17), 6226-6231. doi:10.1021/acs.macromol.6b00904http://dx.doi.org/10.1021/acs.macromol.6b00904
Dai Q. Q.; Zhang X. Q.; Hu Y. M.; He J. Y.; Shi C.; Li Y. Q.; Bai C. X. Regulation of the cis-1,4- and trans-1,4-polybutadiene multiblock copolymers via chain shuttling polymerization using a ternary neodymium organic sulfonate catalyst. Macromolecules, 2017, 50(20), 7887-7894. doi:10.1021/acs.macromol.7b01049http://dx.doi.org/10.1021/acs.macromol.7b01049
Childers M. I.; Vitek A. K.; Morris L. S.; Widger P. C. B.; Ahmed S. M.; Zimmerman P. M.; Coates G. W. Isospecific, chain shuttling polymerization of propylene oxide using a bimetallic chromium catalyst: a new route to semicrystalline polyols. J. Am. Chem. Soc., 2017, 139(32), 11048-11054. doi:10.1021/jacs.7b00194http://dx.doi.org/10.1021/jacs.7b00194
Boggioni L.; Sidari D.; Losio S.; Stehling U.; Auriemma F.; Malafronte A.; Di Girolamo R.; de Rosa C.; Tritto I. Ethylene-co-norbornene copolymerization using a dual catalyst system in the presence of a chain transfer agent. Polymers, 2019, 11(3), 554. doi:10.3390/polym11030554http://dx.doi.org/10.3390/polym11030554
Boggioni L.; Sidari D.; Losio S.; Stehling U. M.; Auriemma F.; Di Girolamo R.; de Rosa C.; Tritto I. Ethylene-co-norbornene copolymerization in the presence of a chain transfer agent. Eur. Polym. J., 2018, 107, 54-66. doi:10.1016/j.eurpolymj.2018.07.037http://dx.doi.org/10.1016/j.eurpolymj.2018.07.037
Bhriain N. N.; Brintzinger H. H.; Ruchatz D.; Fink G. Polymeryl exchange between ansa-zirconocene catalysts for norbornene-ethene copolymerization and aluminum or zinc alkyls. Macromolecules, 2005, 38(6), 2056-2063. doi:10.1021/ma0401166http://dx.doi.org/10.1021/ma0401166
Camara J. M.; Petros R. A.; Norton J. R. Zirconium-catalyzed carboalumination of α-olefins and chain growth of aluminum alkyls: kinetics and mechanism. J. Am. Chem. Soc., 2011, 133(14), 5263-5273. doi:10.1021/ja104032whttp://dx.doi.org/10.1021/ja104032w
Valente A.; Mortreux A.; Visseaux M.; Zinck P. Coordinative chain transfer polymerization. Chem. Rev., 2013, 113(5), 3836-3857. doi:10.1021/cr300289zhttp://dx.doi.org/10.1021/cr300289z
Rouholahnejad F.; Mathis D.; Chen P. Narrowly distributed polyethylene via reversible chain transfer to aluminum by a sterically hindered zirconocene/MAO. Organometallics, 2010, 29(2), 294-302. doi:10.1021/om900238khttp://dx.doi.org/10.1021/om900238k
Tritto I.; Marestin C.; Boggioni L.; Sacchi M. C.; Brintzinger H. H.; Ferro D. R. Stereoregular and stereoirregular alternating ethylene-norbornene copolymers. Macromolecules, 2001, 34(17), 5770-5777. doi:10.1021/ma010122rhttp://dx.doi.org/10.1021/ma010122r
Schnell B.; Meyer H.; Fond C.; Wittmer J. P.; Baschnagel J. Simulated glass-forming polymer melts: glass transition temperature and elastic constants of the glassy state. Eur. Phys. J. E, 2011, 34(9), 97. doi:10.1140/epje/i2011-11097-4http://dx.doi.org/10.1140/epje/i2011-11097-4
Ravasio A.; Boggioni L.; Tritto I. Copolymerization of ethylene with norbornene by neutral aryl phosphine sulfonate palladium catalyst. Macromolecules, 2011, 44(11), 4180-4186. doi:10.1021/ma2006427http://dx.doi.org/10.1021/ma2006427
Wenzel T. T.; Arriola D. J.; Carnahan E. M.; Hustad P. D.; Kuhlman R. L. Chain shuttling catalysis and olefin blockcopolymers (OBCs). Berlin Heidelberg: Springer, 2009. 26, 65-104.
Arndt-Rosenau M.; Beulich I. Microstructure of ethene/norbornene copolymers. Macromolecules, 1999, 32(22), 7335-7343. doi:10.1021/ma981813zhttp://dx.doi.org/10.1021/ma981813z
0
Views
35
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution