浏览全部资源
扫码关注微信
北京分子科学国家研究中心 高分子化学与物理教育部重点实验室 软物质科学与工程中心 北京大学化学与分子工程学院 北京 100871
Published:20 October 2023,
Published Online:16 August 2023,
Received:24 April 2023,
Accepted:06 June 2023
扫 描 看 全 文
范祎宁,杨子凡,吴佳慧等.柱状侧链高分子体系的结构、黏弹性及功能应用[J].高分子学报,2023,54(10):1468-1485.
Fan Yi-ning,Yang Zi-fan,Wu Jia-hui,et al.Cylindrical Side-chain Polymers: Structure, Viscoelasticity and Functional Applications[J].ACTA POLYMERICA SINICA,2023,54(10):1468-1485.
范祎宁,杨子凡,吴佳慧等.柱状侧链高分子体系的结构、黏弹性及功能应用[J].高分子学报,2023,54(10):1468-1485. DOI: 10.11777/j.issn1000-3304.2023.23106.
Fan Yi-ning,Yang Zi-fan,Wu Jia-hui,et al.Cylindrical Side-chain Polymers: Structure, Viscoelasticity and Functional Applications[J].ACTA POLYMERICA SINICA,2023,54(10):1468-1485. DOI: 10.11777/j.issn1000-3304.2023.23106.
近年来,具有柱状结构的侧链高分子体系,如瓶刷状聚合物等,因其特殊的超软、超弹性、快速应变硬化等有趣的黏弹性而受到学术界高度重视. 本综述对相关研究进展做了一些梳理和总结. 主要介绍了瓶刷链、树枝化聚合物、甲壳型液晶高分子等几类经典的以“单链超分子柱”为特征的侧链高分子的结构和线性黏弹性,并以楔形侧链高分子为例介绍了“多链超分子柱”的性质. 在简述柱状侧链高分子体系功能应用方面的探索之后,也扼要讨论了研究中存在的问题与挑战. 虽然目前柱状侧链高分子的缠结及微相分离带来的复杂松弛行为的物理机制还不十分明晰,但对于这类高分子的深入研究无疑将为新型黏弹材料的设计和制造提供新的思路和坚实的理论基础.
Due to their unique supersoft
superelastic
quick strain hardening
and other fascinating viscoelastic features
cylindrical side-chain polymer systems
such as bottlebrush polymers
have gained significant interest recently. In this mini-review
we intend to summarize the relevant research progresses. Several typical side-chain polymers that demonstrate the structure of the single-chain supramolecular columns
including bottlebrushes
dendronized polymers and mesogen-jacketed liquid crystalline polymers
are introduced along with their linear viscoelasticity. Furthermore
the features of multi-chain supramolecular columns are illustrated by using the self-assembly of wedge-shaped side-chain polymers as the example. After a brief overview of the functional applications of cylindrical side-chain polymer systems
we give some comments on the obstacles and challenges in this research field. Even though the physical mechanisms underlying the complex relaxation behavior of cylindrical side-chain polymers caused by entanglement and microphase separation are still not fully understood
research on these polymers will offer fresh perspectives and a theoretical foundation for creating brand-new viscoelastic materials.
侧链高分子柱状结构黏弹性缠结逐次松弛
Side-chain polymersCylindrical structureViscoelasticityEntanglementFunctional applications
Daniel W. F. M.; Burdyńska J.; Vatankhah-Varnoosfaderani M.; Matyjaszewski K.; Paturej J.; Rubinstein M.; Dobrynin A. V.; Sheiko S. S. Solvent-free, supersoft and superelastic bottlebrush melts and networks. Nat. Mater., 2016, 15(2), 183-189. doi:10.1038/nmat4508http://dx.doi.org/10.1038/nmat4508
Vatankhah-Varnosfaderani M.; Daniel W. F. M.; Everhart M. H.; Pandya A. A.; Liang H. Y.; Matyjaszewski K.; Dobrynin A. V.; Sheiko S. S. Mimicking biological stress-strain behaviour with synthetic elastomers. Nature, 2017, 549(7673), 497-501. doi:10.1038/nature23673http://dx.doi.org/10.1038/nature23673
卢宇源, 安立佳, 王健. 高分子黏弹性的经典唯象模型. 高分子学报, 2016, (6), 688-697. doi:10.11777/j.issn1000-3304.2016.16108http://dx.doi.org/10.11777/j.issn1000-3304.2016.16108
Fetters L. J.; Lohse D. J.; Richter D.; Witten T. A.; Zirkel A. Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules, 1994, 27(17), 4639-4647. doi:10.1021/ma00095a001http://dx.doi.org/10.1021/ma00095a001
López-Barrón C. R.; Tsou A. H.; Hagadorn J. R.; Throckmorton J. A. Highly entangled α-olefin molecular bottlebrushes: Melt structure, linear rheology, and interchain friction mechanism. Macromolecules, 2018, 51(17), 6958-6966. doi:10.1021/acs.macromol.8b01431http://dx.doi.org/10.1021/acs.macromol.8b01431
Hiemenz P. C.; Lodge, T. Polymer Chemistry. Florida: CRC Press, 2007. doi:10.1201/9781420018271http://dx.doi.org/10.1201/9781420018271
Fetters L. J.; Lohse D. J.; Milner S. T.; Graessley W. W. Packing length influence in linear polymer melts on the entanglement, critical, and reptation molecular weights. Macromolecules, 1999, 32(20), 6847-6851. doi:10.1021/ma990620ohttp://dx.doi.org/10.1021/ma990620o
Fetters L. J.; Lohse D. J.; Graessley W. W. Chain dimensions and entanglement spacings in dense macromolecular systems. J. Polym. Sci., Part B: Polym. Phys., 1999, 37(10), 1023-1033. doi:10.1002/(sici)1099-0488(19990515)37:10<1023::aid-polb7>3.0.co;2-thttp://dx.doi.org/10.1002/(sici)1099-0488(19990515)37:10<1023::aid-polb7>3.0.co;2-t
Fetters L. J.; Lohse D. J.; García-Franco C. A.; Brant P.; Richter D. Prediction of melt state poly(α-olefin) rheological properties: the unsuspected role of the average molecular weight per backbone bond. Macromolecules, 2002, 35(27), 10096-10101. doi:10.1021/ma025659zhttp://dx.doi.org/10.1021/ma025659z
Tsukahara Y.; Mizuno K.; Segawa A.; Yamashita Y. Study on the radical polymerization behavior of macromonomers. Macromolecules, 1989, 22(4), 1546-1552. doi:10.1021/ma00194a007http://dx.doi.org/10.1021/ma00194a007
Beers K. L.; Gaynor S. G.; Matyjaszewski K.; Sheiko S. S.; Möller M. The synthesis of densely grafted copolymers by atom transfer radical polymerization. Macromolecules, 1998, 31(26), 9413-9415. doi:10.1021/ma981402ihttp://dx.doi.org/10.1021/ma981402i
Xia Y.; Kornfield J. A.; Grubbs R. H. Efficient synthesis of narrowly dispersed brush polymers via living ring-opening metathesis polymerization of macromonomers. Macromolecules, 2009, 42(11), 3761-3766. doi:10.1021/ma900280chttp://dx.doi.org/10.1021/ma900280c
王志琴, 冯纯, 马晨, 黄晓宇. 聚合物分子刷的高效合成与应用. 高分子学报, 2018, (12), 1467-1481. doi:10.11777/j.issn1000-3304.2018.18199http://dx.doi.org/10.11777/j.issn1000-3304.2018.18199
Liang H. Y.; Cao Z.; Wang Z. L.; Sheiko S. S.; Dobrynin A. V. Combs and bottlebrushes in a melt. Macromolecules, 2017, 50(8), 3430-3437. doi:10.1021/acs.macromol.7b00364http://dx.doi.org/10.1021/acs.macromol.7b00364
Liang H. Y.; Morgan B. J.; Xie G. J.; Martinez M. R.; Zhulina E. B.; Matyjaszewski K.; Sheiko S. S.; Dobrynin A. V. Universality of the entanglement plateau modulus of comb and bottlebrush polymer melts. Macromolecules, 2018, 51(23), 10028-10039. doi:10.1021/acs.macromol.8b01761http://dx.doi.org/10.1021/acs.macromol.8b01761
Maw M.; Morgan B. J.; Dashtimoghadam E.; Tian Y. A.; Bersenev E. A.; Maryasevskaya A. V.; Ivanov D. A.; Matyjaszewski K.; Dobrynin A. V.; Sheiko S. S. Brush architecture and network elasticity: path to the design of mechanically diverse elastomers. Macromolecules, 2022, 55(7), 2940-2951. doi:10.1021/acs.macromol.2c00006http://dx.doi.org/10.1021/acs.macromol.2c00006
Paturej J.; Sheiko S. S.; Panyukov S.; Rubinstein M. Molecular structure of bottlebrush polymers in melts. Sci. Adv., 2016, 2(11), e1601478. doi:10.1126/sciadv.1601478http://dx.doi.org/10.1126/sciadv.1601478
Sheiko S. S.; Dobrynin A. V. Architectural code for rubber elasticity: from supersoft to superfirm materials. Macromolecules, 2019, 52(20), 7531-7546. doi:10.1021/acs.macromol.9b01127http://dx.doi.org/10.1021/acs.macromol.9b01127
Vatankhah-Varnosfaderani M.; Keith A. N.; Cong Y. D.; Liang H. Y.; Rosenthal M.; Sztucki M.; Clair C.; Magonov S.; Ivanov D. A.; Dobrynin A. V.; Sheiko S. S. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science, 2018, 359(6383), 1509-1513. doi:10.1126/science.aar5308http://dx.doi.org/10.1126/science.aar5308
Sheiko S. S.; Vashahi F.; Morgan B. J.; Maw M.; Dashtimoghadam E.; Fahimipour F.; Jacobs M.; Keith A. N.; Vatankhah-Varnosfaderani M.; Dobrynin A. V. Mechanically diverse gels with equal solvent content. ACS Cent. Sci., 2022, 8(6), 845-852. doi:10.1021/acscentsci.2c00472http://dx.doi.org/10.1021/acscentsci.2c00472
Li Z. L.; Tang M.; Liang S.; Zhang M. Y.; Biesold G. M.; He Y. J.; Hao S. M.; Choi W.; Liu Y. J.; Peng J.; Lin Z. Q. Bottlebrush polymers: From controlled synthesis, self-assembly, properties to applications. Prog. Polym. Sci., 2021, 116, 101387. doi:10.1016/j.progpolymsci.2021.101387http://dx.doi.org/10.1016/j.progpolymsci.2021.101387
Hu M. A.; Xia Y.; McKenna G. B.; Kornfield J. A.; Grubbs R. H. Linear rheological response of a series of densely branched brush polymers. Macromolecules, 2011, 44(17), 6935-6943. doi:10.1021/ma2009673http://dx.doi.org/10.1021/ma2009673
Gurp M. V.; Palmen J. Time-temperature superposition for polymeric blends. Rheol. Bull., 1998, 67(1), 5-8.
Dalsin S. J.; Hillmyer M. A.; Bates F. S. Linear rheology of polyolefin-based bottlebrush polymers. Macromolecules, 2015, 48(13), 4680-4691. doi:10.1021/acs.macromol.5b01153http://dx.doi.org/10.1021/acs.macromol.5b01153
Costanzo S.; Scherz L. F.; Schweizer T.; Kröger M.; Floudas G.; Schlüter A. D.; Vlassopoulos D. Rheology and packing of dendronized polymers. Macromolecules, 2016, 49(18), 7054-7068. doi:10.1021/acs.macromol.6b01311http://dx.doi.org/10.1021/acs.macromol.6b01311
Pakula T.; Zhang Y.; Matyjaszewski K.; Lee H. I.; Boerner H.; Qin S. H.; Berry G. C. Molecular brushes as super-soft elastomers. Polymer, 2006, 47(20), 7198-7206. doi:10.1016/j.polymer.2006.05.064http://dx.doi.org/10.1016/j.polymer.2006.05.064
Haugan I.; Maher M. J.; Chang A. B.; Lin T. P.; Grubbs R. H.; Hillmyer M. A.; Bates F. S. Consequences of grafting density on the linear viscoelastic behavior of graft polymers. ACS Macro Lett., 2018, 7(5), 525-530. doi:10.1021/acsmacrolett.8b00116http://dx.doi.org/10.1021/acsmacrolett.8b00116
Zhang B. Z.; Wepf R.; Fischer K.; Schmidt M.; Besse S.; Lindner P.; King B. T.; Sigel R.; Schurtenberger P.; Talmon Y.; Ding Y.; Kröger M.; Halperin A.; Schlüter A. D. The largest synthetic structure with molecular precision: Towards a molecular object. Angew. Chem. Int. Ed., 2011, 50(3), 737-740. doi:10.1002/anie.201005164http://dx.doi.org/10.1002/anie.201005164
Rosen B. M.; Wilson C. J.; Wilson D. A.; Peterca M.; Imam M. R.; Percec V. Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem. Rev., 2009, 109(11), 6275-6540. doi:10.1021/cr900157qhttp://dx.doi.org/10.1021/cr900157q
Percec V.; Ahn C. H.; Ungar G.; Yeardley D. J. P.; Möller M.; Sheiko S. S. Controlling polymer shape through the self-assembly of dendritic side-groups. Nature, 1998, 391(6663), 161-164. doi:10.1038/34384http://dx.doi.org/10.1038/34384
Percec V.; Schlueter D.; Ungar G.; Cheng S. Z. D.; Zhang A. Hierarchical control of internal superstructure, diameter, and stability of supramolecular and macromolecular columns generated from tapered monodendritic building blocks. Macromolecules, 1998, 31(6), 1745-1762. doi:10.1021/ma971459phttp://dx.doi.org/10.1021/ma971459p
Percec V.; Imam M. R.; Peterca M.; Leowanawat P. Self-organizable vesicular columns assembled from polymers dendronized with semifluorinated Janus dendrimers act as reverse thermal actuators. J. Am. Chem. Soc., 2012, 134(9), 4408-4420. doi:10.1021/ja2118267http://dx.doi.org/10.1021/ja2118267
Rosen B. M.; Wilson D. A.; Wilson C. J.; Peterca M.; Won B. C.; Huang C. H.; Lipski L. R.; Zeng X. B.; Ungar G.; Heiney P. A.; Percec V. Predicting the structure of supramolecular dendrimers via the analysis of libraries of AB3 and constitutional isomeric AB2 biphenylpropyl ether self-assembling dendrons. J. Am. Chem. Soc., 2009, 131(47), 17500-17521. doi:10.1021/ja907882nhttp://dx.doi.org/10.1021/ja907882n
Kwon Y. K.; Chvalun S.; Schneider A. I.; Blackwell J.; Percec V.; Heck J. A. Supramolecular tubular structures of a polymethacrylate with tapered side groups in aligned hexagonal phases. Macromolecules, 1994, 27(21), 6129-6132. doi:10.1021/ma00099a029http://dx.doi.org/10.1021/ma00099a029
Qian Z. Y.; Koh Y. P.; Pallaka M. R.; Chang A. B.; Lin T. P.; Guzmán P. E.; Grubbs R. H.; Simon S. L.; McKenna G. B. Linear rheology of a series of second-generation dendronized wedge polymers. Macromolecules, 2019, 52(5), 2063-2074. doi:10.1021/acs.macromol.8b02122http://dx.doi.org/10.1021/acs.macromol.8b02122
Vereroudakis E.; Bang K. T.; Karouzou M.; Ananiadou A.; Noh J.; Choi T. L.; Loppinet B.; Floudas G.; Vlassopoulos D. Multi-scale structure and dynamics of dendronized polymers with varying generations. Macromolecules, 2021, 54(1), 235-248. doi:10.1021/acs.macromol.0c02356http://dx.doi.org/10.1021/acs.macromol.0c02356
Hu M.; Xia Y.; Daeffler C. S.; Wang J. H.; McKenna G. B.; Kornfield J. A.; Grubbs R. H. The linear rheological responses of wedge-type polymers. J. Polym. Sci., Part B: Polym. Phys., 2015, 53(13), 899-906. doi:10.1002/polb.23716http://dx.doi.org/10.1002/polb.23716
Ye C.; Zhang H. L.; Huang Y.; Chen E. Q.; Lu Y. L.; Shen D. Y.; Wan X. H.; Shen Z. H.; Cheng S. Z. D.; Zhou Q. F. Molecular weight dependence of phase structures and transitions of mesogen-jacketed liquid crystalline polymers based on 2-vinylterephthalic acids. Macromolecules, 2004, 37(19), 7188-7196. doi:10.1021/ma049195bhttp://dx.doi.org/10.1021/ma049195b
Zhou Q. F.; Chen X. F.; Fan X. H.; Wan X. H.; Chen E. Q.; Shen Z. H. Side-chain jacketing effect and mesogen-jacketed liquid crystalline polymers. Sci. Sin. Chim, 2012, 42(5), 606-621. doi:10.1360/032012-61http://dx.doi.org/10.1360/032012-61
刘鑫, 郑晓慧, 刘小青, 赵瑞颖, 赵体鹏, 刘琛阳, 孙平川, 陈尔强. 聚(乙烯基对苯二甲酸二烷基酯)的非寻常相转变. 高分子学报, 2017, (9), 1506-1516. doi:10.11777/j.issn1000-3304.2017.17082http://dx.doi.org/10.11777/j.issn1000-3304.2017.17082
Pasquino R.; Zhang B.; Sigel R.; Yu H.; Ottiger M.; Bertran O.; Aleman C.; Schlüter A. D.; Vlassopoulos D. Linear viscoelastic response of dendronized polymers. Macromolecules, 2012, 45(21), 8813-8823. doi:10.1021/ma301029thttp://dx.doi.org/10.1021/ma301029t
Wunderlich, B. Macromolecular Physics: Crystal Structure, Morphology, Defects. Beijing: Academic Press, 1973. doi:10.1016/b978-0-12-765601-4.50008-1http://dx.doi.org/10.1016/b978-0-12-765601-4.50008-1
Stepanyan R.; Subbotin A.; Knaapila M.; Ikkala O.; ten Brinke G. Self-organization of hairy-rod polymers. Macromolecules, 2003, 36(10), 3758-3763. doi:10.1021/ma0259665http://dx.doi.org/10.1021/ma0259665
Ungar G. Thermotropic hexagonal phases in polymers: common features and classification. Polymer, 1993, 34(10), 2050-2059. doi:10.1016/0032-3861(93)90730-xhttp://dx.doi.org/10.1016/0032-3861(93)90730-x
赵瑞颖, 蒋旭强, 郑军峰, 刘小青, 徐艳双, 杨爽, 陈尔强. 基于"多链超分子柱"的侧链液晶高分子柱状相. 高分子学报, 2018, (8), 973-986. doi:10.11777/j.issn1000-3304.2018.18065http://dx.doi.org/10.11777/j.issn1000-3304.2018.18065
Liu X. Q.; Wang J.; Yang S.; Chen E. Q. Self-organized columnar phase of side-chain liquid crystalline polymers: to precisely control the number of chains bundled in a supramolecular column. ACS Macro Lett., 2014, 3(9), 834-838. doi:10.1021/mz500387ahttp://dx.doi.org/10.1021/mz500387a
Zheng J. F.; Liu X.; Chen X. F.; Ren X. K.; Yang S. A.; Chen E. Q. Hemiphasmidic side-chain liquid crystalline polymer: from smectic C phase to columnar phase with a bundle of chains as its building block. ACS Macro Lett., 2012, 1(5), 641-645. doi:10.1021/mz3001435http://dx.doi.org/10.1021/mz3001435
Jiang X. Q.; Zhao R. Y.; Chang W. Y.; Yin D. X.; Guo Y. C.; Wang W.; Liang D. H.; Yang S. A.; Shi A. C.; Chen E. Q. Highly ordered sub-10 nm patterns based on multichain columns of side-chain liquid crystalline polymers. Macromolecules, 2019, 52(13), 5033-5041. doi:10.1021/acs.macromol.9b00910http://dx.doi.org/10.1021/acs.macromol.9b00910
Yang Z. F.; Li J. H.; Chen X.; Fan Y. N.; Huang J.; Yu H. F.; Yang S.; Chen E. Q. Precisely controllable artificial muscle with continuous morphing based on "breathing" of supramolecular columns. Adv. Mater., 2023, 35(14), 2211648. doi:10.1002/adma.202211648http://dx.doi.org/10.1002/adma.202211648
Zhao R. Y.; Zhao T. P.; Jiang X. Q.; Liu X.; Shi D.; Liu C. Y.; Yang S.; Chen E. Q. Thermoplastic high strain multishape memory polymer: side-chain polynorbornene with columnar liquid crystalline phase. Adv. Mater., 2017, 29(12), 1605908. doi:10.1002/adma.201605908http://dx.doi.org/10.1002/adma.201605908
Riazi K.; Kübel J.; Abbasi M.; Bachtin K.; Indris S.; Ehrenberg H.; Kádár R.; Wilhelm M. Polystyrene comb architectures as model systems for the optimized solution electrospinning of branched polymers. Polymer, 2016, 104, 240-250. doi:10.1016/j.polymer.2016.05.032http://dx.doi.org/10.1016/j.polymer.2016.05.032
Abbasi M.; Faust L.; Wilhelm M. Molecular origin of the foam structure in model linear and comb polystyrenes: Ⅱ. Volume expansion ratio. Polymer, 2020, 193, 122354. doi:10.1016/j.polymer.2020.122354http://dx.doi.org/10.1016/j.polymer.2020.122354
Chen J.; Huang Z. Y. Elastic behavior of comb-like polymer chains. Chinese J. Polym. Sci., 2010, 28(3), 311-322. doi:10.1007/s10118-010-9006-0http://dx.doi.org/10.1007/s10118-010-9006-0
Vatankhah-Varnoosfaderani M.; Daniel W. F. M.; Zhushma A. P.; Li Q. X.; Morgan B. J.; Matyjaszewski K.; Armstrong D. P.; Spontak R. J.; Dobrynin A. V.; Sheiko S. S. Bottlebrush elastomers: a new platform for freestanding electroactuation. Adv. Mater., 2017, 29(2), 1604209. doi:10.1002/adma.201604209http://dx.doi.org/10.1002/adma.201604209
Tan Y.; Chen H. A.; Kang W. B.; Wang X. Versatile light-mediated synthesis of dry ion-conducting dynamic bottlebrush networks with high elasticity, interfacial adhesiveness, and flame retardancy. Macromolecules, 2022, 55(21), 9715-9725. doi:10.1021/acs.macromol.2c01234http://dx.doi.org/10.1021/acs.macromol.2c01234
Xie G. J.; Martinez M. R.; Olszewski M.; Sheiko S. S.; Matyjaszewski K. Molecular bottlebrushes as novel materials. Biomacromolecules, 2019, 20(1), 27-54. doi:10.1021/acs.biomac.8b01171http://dx.doi.org/10.1021/acs.biomac.8b01171
Piunova V. A.; Miyake G. M.; Daeffler C. S.; Weitekamp R. A.; Grubbs R. H. Highly ordered dielectric mirrors via the self-assembly of dendronized block copolymers. J. Am. Chem. Soc., 2013, 135(41), 15609-15616. doi:10.1021/ja4081502http://dx.doi.org/10.1021/ja4081502
Lu Y.; Wang D. F.; Li T.; Zhao X. Q.; Cao Y. L.; Yang H. X.; Duan Y. Y. Poly(vinyl alcohol)/poly(acrylic acid) hydrogel coatings for improving electrode-neural tissue interface. Biomaterials, 2009, 30(25), 4143-4151. doi:10.1016/j.biomaterials.2009.04.030http://dx.doi.org/10.1016/j.biomaterials.2009.04.030
Minev I. R.; Musienko P.; Hirsch A.; Barraud Q.; Wenger N.; Moraud E. M.; Gandar J.; Capogrosso M.; Milekovic T.; Asboth L.; Torres R. F.; Vachicouras N.; Liu Q. H.; Pavlova N.; Duis S.; Larmagnac A.; Vörös J.; Micera S.; Suo Z. G.; Courtine G.; Lacour S. P. Biomaterials. Electronic dura mater for long-term multimodal neural interfaces. Science, 2015, 347(6218), 159-163. doi:10.1126/science.1260318http://dx.doi.org/10.1126/science.1260318
Zhang D. X.; Dashtimoghadam E.; Fahimipour F.; Hu X. B.; Li Q. X.; Bersenev E. A.; Ivanov D. A.; Vatankhah-Varnoosfaderani M.; Sheiko S. S. Tissue-adaptive materials with independently regulated modulus and transition temperature. Adv. Mater., 2020, 32(50), 2005314. doi:10.1002/adma.202005314http://dx.doi.org/10.1002/adma.202005314
Peng B.; Liang H. Y.; Li Y. Y.; Dong C.; Shen J.; Mao H. Q.; Leong K. W.; Chen Y. M.; Liu L. X. Tuned cationic dendronized polymer: molecular scavenger for rheumatoid arthritis treatment. Angew. Chem. Int. Ed., 2019, 58(13), 4254-4258. doi:10.1002/anie.201813362http://dx.doi.org/10.1002/anie.201813362
Kawamoto K.; Zhong M. J.; Gadelrab K. R.; Cheng L. C.; Ross C. A.; Alexander-Katz A.; Johnson J. A. Graft-through synthesis and assembly of Janus bottlebrush polymers from A-branch-B diblock macromonomers. J. Am. Chem. Soc., 2016, 138(36), 11501-11504. doi:10.1021/jacs.6b07670http://dx.doi.org/10.1021/jacs.6b07670
Guo Z. H.; Le A. N.; Feng X. D.; Choo Y.; Liu B. Q.; Wang D. Y.; Wan Z. Y.; Gu Y. W.; Zhao J. L.; Li V.; Osuji C. O.; Johnson J. A.; Zhong M. J. Janus graft block copolymers: design of a polymer architecture for independently tuned nanostructures and polymer properties. Angew. Chem. Int. Ed., 2018, 57(28), 8493-8497. doi:10.1002/anie.201802844http://dx.doi.org/10.1002/anie.201802844
Liang R. Q.; Xue Y. Z.; Fu X. W.; Le A. N.; Song Q. L.; Qiang Y. C.; Xie Q.; Dong R. Q.; Sun Z. H.; Osuji C. O.; Johnson J. A.; Li W. H.; Zhong M. J. Hierarchically engineered nanostructures from compositionally anisotropic molecular building blocks. Nat. Mater., 2022, 21(12), 1434-1440. doi:10.1038/s41563-022-01393-0http://dx.doi.org/10.1038/s41563-022-01393-0
Xia Y.; Olsen B. D.; Kornfield J. A.; Grubbs R. H. Efficient synthesis of narrowly dispersed brush copolymers and study of their assemblies: The importance of side chain arrangement. J. Am. Chem. Soc., 2009, 131(51), 18525-18532. doi:10.1021/ja908379qhttp://dx.doi.org/10.1021/ja908379q
Xie R. X.; Mukherjee S.; Levi A. E.; Reynolds V. G.; Wang H. B.; Chabinyc M. L.; Bates C. M. Room temperature 3D printing of super-soft and solvent-free elastomers. Sci. Adv., 2020, 6(46), eabc6900. doi:10.1126/sciadv.abc6900http://dx.doi.org/10.1126/sciadv.abc6900
Xie R. X.; Mukherjee S.; Levi A. E.; Self J. L.; Wang H. B.; Chabinyc M. L.; Bates C. M. Yielding behavior of bottlebrush and linear block copolymers. Macromolecules, 2021, 54(12), 5636-5647. doi:10.1021/acs.macromol.1c00557http://dx.doi.org/10.1021/acs.macromol.1c00557
0
Views
59
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution