浏览全部资源
扫码关注微信
1.清华大学,化学工程系,北京 100084
2.清华大学,探微书院,北京 100084
Published:20 September 2023,
Published Online:19 July 2023,
Received:23 April 2023,
Accepted:05 June 2023
扫 描 看 全 文
叶焱,孟祥泽,唐国烁等.高分子材料的生物降解性能表征[J].高分子学报,2023,54(09):1363-1384.
Ye Yan,Meng Xiang-ze,Tang Guo-shuo,et al.Characterization Techniques of Polymer Biodegradation Properties[J].ACTA POLYMERICA SINICA,2023,54(09):1363-1384.
叶焱,孟祥泽,唐国烁等.高分子材料的生物降解性能表征[J].高分子学报,2023,54(09):1363-1384. DOI: 10.11777/j.issn1000-3304.2023.23111.
Ye Yan,Meng Xiang-ze,Tang Guo-shuo,et al.Characterization Techniques of Polymer Biodegradation Properties[J].ACTA POLYMERICA SINICA,2023,54(09):1363-1384. DOI: 10.11777/j.issn1000-3304.2023.23111.
生物降解能够使高分子材料回归自然界物质循环,被认为是解决塑料污染的一大重要途径. 高分子材料的生物降解性能表征对相关材料开发、改性和产业应用十分重要. 本文针对高分子材料的需氧生物降解,从降解产物和降解残留材料两个方面介绍常用表征方法. 降解产物的表征主要从CO
2
生成量、O
2
消耗量和小分子产物三方面开展,降解残留材料的表征围绕其组成结构变化和性能变化. 介绍了各表征方法的简单原理和典型案例,并对未来发展进行了展望.
Biodegradation is an effective route for polymer materials to go back into the natural circumstance
and biodegradable polymers is regarded as an important solution to the plastic pollution problem. Characterization of biodegradability is therefore crucial for the development
modification
and application of degradable polymer materials. This review aims at the aerobic biodegradation of polymer materials and introduces typical characterization techniques
focusing on two aspects: degradation products and materials after degradation. For degradation products
the characterization are mainly carried out from three aspects: CO
2
generation
O
2
consumption
and determination of small molecular degradation products. In addition
the characterization of biomass can indicate the impacts of polymers on organisms and the environment during the biodegradation process. The characterization of materials after degradation involves composition changes
structure changes
and service performance changes such as weight loss and mechanical property deterioration. There may be a heterogeneous distribution of degradation in polymer materials. One reason is that the enzymatic decomposition starts from the surface and gradually develops into the matrix. In this paper
the principles of various characterization methods are introduced and typical examples are supplied. In the future
rapid biodegradation evaluation method is expected and comprehensive analysis of various characterization results is used to help the precise design and preparation of controllable biodegradability of polymers.
高分子材料生物降解降解产物材料表征性能变化
Polymer materialBiodegradationDegradation productMaterial characterizationPerformance change
Chamas A.; Moon H.; Zheng J. J.; Qiu Y.; Tabassum T.; Jang J. H.; Abu-Omar M.; Scott S. L.; Suh S. Degradation rates of plastics in the environment. ACS Sustain. Chem. Eng., 2020, 8(9), 3494-3511. doi:10.1021/acssuschemeng.9b06635http://dx.doi.org/10.1021/acssuschemeng.9b06635
Velis C. A.; Cook E. Mismanagement of plastic waste through open burning with emphasis on the global south: a systematic review of risks to occupational and public health. Environ. Sci. Technol., 2021, 55(11), 7186-7207. doi:10.1021/acs.est.0c08536http://dx.doi.org/10.1021/acs.est.0c08536
Castro-Aguirre E.; Auras R.; Selke S.; Rubino M.; Marsh T. Enhancing the biodegradation rate of poly(lactic acid) films and PLA bio-nanocomposites in simulated composting through bioaugmentation. Polym. Degrad. Stabil., 2018, 154, 46-54. doi:10.1016/j.polymdegradstab.2018.05.017http://dx.doi.org/10.1016/j.polymdegradstab.2018.05.017
Antipova T. V.; Zhelifonova V. P.; Zaitsev K. V.; Nedorezova P. M.; Aladyshev A. M.; Klyamkina A. N.; Kostyuk S. V.; Danilogorskaya A. A.; Kozlovsky A. G. Biodegradation of poly-ε-caprolactones and poly-L-lactides by Fungi. J. Polym. Environ., 2018, 26(12), 4350-4359. doi:10.1007/s10924-018-1307-3http://dx.doi.org/10.1007/s10924-018-1307-3
Satti S. M.; Shah A. A.; Marsh T. L.; Auras R. Biodegradation of poly(lactic acid) in soil microcosms at ambient temperature: evaluation of natural attenuation, bio-augmentation and bio-stimulation. J. Polym. Environ., 2018, 26(9), 3848-3857. doi:10.1007/s10924-018-1264-xhttp://dx.doi.org/10.1007/s10924-018-1264-x
Turco R.; Zannini D.; Mallardo S.; Dal Poggetto G.; Tesser R.; Santagata G.; Malinconico M.; Di Serio M. Biocomposites based on poly(lactic acid), Cynara Cardunculus seed oil and fibrous presscake: a novel eco-friendly approach to hasten PLA biodegradation in common soil. Polym. Degrad. Stabil., 2021, 188, 109576. doi:10.1016/j.polymdegradstab.2021.109576http://dx.doi.org/10.1016/j.polymdegradstab.2021.109576
Mistry A. N.; Kachenchart B.; Wongthanaroj A.; Somwangthanaroj A.; Luepromchai E. Rapid biodegradation of high molecular weight semi-crystalline polylactic acid at ambient temperature via enzymatic and alkaline hydrolysis by a defined bacterial consortium. Polym. Degrad. Stabil., 2022, 202, 110051. doi:10.1016/j.polymdegradstab.2022.110051http://dx.doi.org/10.1016/j.polymdegradstab.2022.110051
Gil-Castell O.; Andres-Puche R.; Dominguez E.; Verdejo E.; Monreal L.; Ribes-Greus A. Influence of substrate and temperature on the biodegradation of polyester-based materials: polylactide and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) as model cases. Polym. Degrad. Stabil., 2020, 180, 109288. doi:10.1016/j.polymdegradstab.2020.109288http://dx.doi.org/10.1016/j.polymdegradstab.2020.109288
Nakayama A.; Yamano N.; Kawasaki N. Biodegradation in seawater of aliphatic polyesters. Polym. Degrad. Stabil., 2019, 166, 290-299. doi:10.1016/j.polymdegradstab.2019.06.006http://dx.doi.org/10.1016/j.polymdegradstab.2019.06.006
Briassoulis D.; Pikasi A.; Papardaki N. G.; Mistriotis A. Aerobic biodegradation of bio-based plastics in the seawater/sediment interface (sublittoral) marine environment of the coastal zone — test method under controlled laboratory conditions. Sci. Total Environ., 2020, 722, 137748. doi:10.1016/j.scitotenv.2020.137748http://dx.doi.org/10.1016/j.scitotenv.2020.137748
Gaidukovs S.; Platnieks O.; Gaidukova G.; Starkova O.; Barkane A.; Beluns S.; Thakur V. K. Understanding the impact of microcrystalline cellulose modification on durability and biodegradation of highly loaded biocomposites for woody like materials applications. J. Polym. Environ., 2022, 30(4), 1435-1450. doi:10.1007/s10924-021-02291-3http://dx.doi.org/10.1007/s10924-021-02291-3
Nikolaivits E.; Taxeidis G.; Gkountela C.; Vouyiouka S.; Maslak V.; Nikodinovic-Runic J.; Topakas E. A polyesterase from the Antarctic bacterium Moraxella sp. degrades highly crystalline synthetic polymers. J. Hazard. Mater., 2022, 434, 128900. doi:10.1016/j.jhazmat.2022.128900http://dx.doi.org/10.1016/j.jhazmat.2022.128900
Quattrosoldi S.; Soccio M.; Gazzano M.; Lotti N.; Munari A. Fully biobased, elastomeric and compostable random copolyesters of poly(butylene succinate) containing Pripol 1009 moieties: Structure-property relationship. Polym. Degrad. Stabil., 2020, 178, 109189. doi:10.1016/j.polymdegradstab.2020.109189http://dx.doi.org/10.1016/j.polymdegradstab.2020.109189
Bi S. W.; Tan B.; Soule J. L.; Sobkowicz M. J. Enzymatic degradation of poly(butylene succinate-co-hexamethylene succinate). Polym. Degrad. Stabil., 2018, 155, 9-14. doi:10.1016/j.polymdegradstab.2018.06.017http://dx.doi.org/10.1016/j.polymdegradstab.2018.06.017
Anunciado M. B.; Hayes D. G.; Astner A. F.; Wadsworth L. C.; Cowan-Banker C. D.; Gonzalez J. E. L. Y.; DeBruyn J. M. Effect of environmental weathering on biodegradation of biodegradable plastic mulch films under ambient soil and composting conditions. J. Polym. Environ., 2021, 29(9), 2916-2931. doi:10.1007/s10924-021-02088-4http://dx.doi.org/10.1007/s10924-021-02088-4
Morro A.; Catalina F.; Sanchez-León E.; Abrusci C. Photodegradation and biodegradation under thermophile conditions of mulching films based on poly(butylene adipate-co-terephthalate) and its blend with poly(lactic acid). J. Polym. Environ., 2019, 27(2), 352-363. doi:10.1007/s10924-018-1350-0http://dx.doi.org/10.1007/s10924-018-1350-0
Souza P. M. S.; Coelho F. M.; Sommaggio L. R. D.; Marin-Morales M. A.; Morales A. R. Disintegration and biodegradation in soil of PBAT mulch films: influence of the stabilization systems based on carbon black/hindered amine light stabilizer and carbon black/vitamin E. J. Polym. Environ., 2019, 27(7), 1584-1594. doi:10.1007/s10924-019-01455-6http://dx.doi.org/10.1007/s10924-019-01455-6
Bonilla J.; Paiano R. B.; Lourenço R. V.; Bittante A. M. Q. B.; Sobral P. J. A. Biodegradability in aquatic system of thin materials based on chitosan, PBAT and HDPE polymers: respirometric and physical-chemical analysis. Int. J. Biol. Macromol., 2020, 164, 1399-1412. doi:10.1016/j.ijbiomac.2020.07.309http://dx.doi.org/10.1016/j.ijbiomac.2020.07.309
Delacuvellerie A.; Benali S.; Cyriaque V.; Moins S.; Raquez J. M.; Gobert S.; Wattiez R. Microbial biofilm composition and polymer degradation of compostable and non-compostable plastics immersed in the marine environment. J. Hazard. Mater., 2021, 419, 126526. doi:10.1016/j.jhazmat.2021.126526http://dx.doi.org/10.1016/j.jhazmat.2021.126526
Wei S. W.; Zhao Y. J.; Zhou R. M.; Lin J. W.; Su T. T.; Tong H. B.; Wang Z. Y. Biodegradation of polybutylene adipate-co-terephthalate by Priestia megaterium, Pseudomonas mendocina, and Pseudomonas pseudoalcaligenes following incubation in the soil. Chemosphere, 2022, 307, 135700. doi:10.1016/j.chemosphere.2022.135700http://dx.doi.org/10.1016/j.chemosphere.2022.135700
Kuo D. L.; Wu T. M. Crystallization behavior and morphology of hexadecylamine-modified layered zinc phenylphosphonate and poly(butylene succinate-co-adipate) composites with controllable biodegradation rates. J. Polym. Environ., 2019, 27(1), 10-18. doi:10.1007/s10924-018-1319-zhttp://dx.doi.org/10.1007/s10924-018-1319-z
Salomez M.; George M.; Fabre P.; Touchaleaume F.; Cesar G.; Lajarrige A.; Gastaldi E. A comparative study of degradation mechanisms of PHBV and PBSA under laboratory-scale composting conditions. Polym. Degrad. Stabil., 2019, 167, 102-113. doi:10.1016/j.polymdegradstab.2019.06.025http://dx.doi.org/10.1016/j.polymdegradstab.2019.06.025
Guindani C.; Candiotto G.; Araújo P. H. H.; Ferreira S. R. S.; de Oliveira D.; Wurm F. R.; Landfester K. Controlling the biodegradation rates of poly(globalide-co-ε-caprolactone) copolymers by post polymerization modification. Polym. Degrad. Stabil., 2020, 179, 109287. doi:10.1016/j.polymdegradstab.2020.109287http://dx.doi.org/10.1016/j.polymdegradstab.2020.109287
Richert A.; Dąbrowska G. B. Enzymatic degradation and biofilm formation during biodegradation of polylactide and polycaprolactone polymers in various environments. Int. J. Biol. Macromol., 2021, 176, 226-232. doi:10.1016/j.ijbiomac.2021.01.202http://dx.doi.org/10.1016/j.ijbiomac.2021.01.202
Mandic M.; Spasic J.; Ponjavic M.; Nikolic M. S.; Cosovic V. R.; O'Connor K. E.; Nikodinovic-Runic J.; Djokic L.; Jeremic S. Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. Polym. Degrad. Stabil., 2019, 162, 160-168. doi:10.1016/j.polymdegradstab.2019.02.012http://dx.doi.org/10.1016/j.polymdegradstab.2019.02.012
Borrowman C. K.; Johnston P.; Adhikari R.; Saito K.; Patti A. F. Environmental degradation and efficacy of a sprayable, biodegradable polymeric mulch. Polym. Degrad. Stabil., 2020, 175, 109126. doi:10.1016/j.polymdegradstab.2020.109126http://dx.doi.org/10.1016/j.polymdegradstab.2020.109126
Behtouei E.; Zandi M.; Askari F.; Daemi H.; Zamanlui S.; Arabsorkhi-Mishabi A.; Pezeshki-Modaress M. Bead-free and tough electrospun PCL/gelatin/PGS ternary nanofibrous scaffolds for tissue engineering application. J. Appl. Polym. Sci., 2022, 139(2), 51471. doi:10.1002/app.51471http://dx.doi.org/10.1002/app.51471
de Souza Vieira L.; Montagna L. S.; da Silva A. P. B.; Almeida Verginio G. E.; Passador F. R. Effect of glassy carbon addition and photodegradation on the biodegradation in aqueous medium of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/glassy carbon green composites. J. Appl. Polym. Sci., 2021, 138(33), 50821. doi:10.1002/app.50821http://dx.doi.org/10.1002/app.50821
Park S.; Ahn S. Y.; Choi K. Y. Incorporation of deoxyviolacein functional dye into PHB and cellulose double layered-biodegradable polymer. J. Polym. Environ., 2023, 31(4), 1525-1535. doi:10.1007/s10924-022-02699-5http://dx.doi.org/10.1007/s10924-022-02699-5
Thomas S.; Shumilova A. A.; Kiselev E. G.; Baranovsky S. V.; Vasiliev A. D.; Nemtsev I. V.; Kuzmin A. P.; Sukovatyi A. G.; Avinash R. P.; Volova T. G. Thermal, mechanical and biodegradation studies of biofiller based poly-3-hydroxybutyrate biocomposites. Int. J. Biol. Macromol., 2020, 155, 1373-1384. doi:10.1016/j.ijbiomac.2019.11.112http://dx.doi.org/10.1016/j.ijbiomac.2019.11.112
Fujieda K.; Enomoto Y.; Huang Q. Y.; Iwata T. Synthesis and enzymatic biodegradation of co-polyesters consisting of divanillic acid with free hydroxyl groups. Polymer, 2023, 268, 125685. doi:10.1016/j.polymer.2023.125685http://dx.doi.org/10.1016/j.polymer.2023.125685
Jumaidin R.; Khiruddin M. A. A.; Asyul Sutan Saidi Z.; Salit M. S.; Ahmad Ilyas R. Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite. Int. J. Biol. Macromol., 2020, 146, 746-755. doi:10.1016/j.ijbiomac.2019.11.011http://dx.doi.org/10.1016/j.ijbiomac.2019.11.011
Sen C.; Das M. Biodegradability of starch based self-supporting antimicrobial film and its effect on soil quality. J. Polym. Environ., 2018, 26(12), 4331-4337. doi:10.1007/s10924-018-1304-6http://dx.doi.org/10.1007/s10924-018-1304-6
Degli-Innocenti F.; Barbale M.; Chinaglia S.; Esposito E.; Pecchiari M.; Razza F.; Tosin M. Analysis of the microplastic emission potential of a starch-based biodegradable plastic material. Polym. Degrad. Stabil., 2022, 199, 109934. doi:10.1016/j.polymdegradstab.2022.109934http://dx.doi.org/10.1016/j.polymdegradstab.2022.109934
Hasan M.; Gopakumar D. A.; Olaiya N. G.; Zarlaida F.; Alfian A.; Aprinasari C.; Alfatah T.; Rizal S.; Khalil H. P. S. A. Evaluation of the thermomechanical properties and biodegradation of brown rice starch-based chitosan biodegradable composite films. Int. J. Biol. Macromol., 2020, 156, 896-905. doi:10.1016/j.ijbiomac.2020.04.039http://dx.doi.org/10.1016/j.ijbiomac.2020.04.039
Balakrishnan P.; Geethamma V. G.; Gopi S.; Thomas M. G.; Kunaver M.; Huskić M.; Kalarikkal N.; Volova T.; Rouxel D.; Thomas S. Thermal, biodegradation and theoretical perspectives on nanoscale confinement in starch/cellulose nanocomposite modified via green crosslinker. Int. J. Biol. Macromol., 2019, 134, 781-790. doi:10.1016/j.ijbiomac.2019.05.088http://dx.doi.org/10.1016/j.ijbiomac.2019.05.088
Riyajan S. A.; Teprak A. A novel environmentally friendly biopolymer product from gelatin and natural rubber: effect of bagasse fiber and urea. J. Polym. Environ., 2019, 27(2), 225-233. doi:10.1007/s10924-018-1336-yhttp://dx.doi.org/10.1007/s10924-018-1336-y
Akay O.; Altinkok C.; Acik G.; Yuce H.; Ege G. K.; Genc G. Preparation of a sustainable bio-copolymer based on Luffa cylindrica cellulose and poly(ɛ-caprolactone) for bioplastic applications. Int. J. Biol. Macromol., 2022, 196, 98-106. doi:10.1016/j.ijbiomac.2021.12.051http://dx.doi.org/10.1016/j.ijbiomac.2021.12.051
Mirtaghavi A.; Baldwin A.; Tanideh N.; Zarei M.; Muthuraj R.; Cao Y.; Zhao G.; Geng J. F.; Jin H.; Luo J. K. Crosslinked porous three-dimensional cellulose nanofibers-gelatine biocomposite scaffolds for tissue regeneration. Int. J. Biol. Macromol., 2020, 164, 1949-1959. doi:10.1016/j.ijbiomac.2020.08.066http://dx.doi.org/10.1016/j.ijbiomac.2020.08.066
Kaczmarek-Szczepańska B.; Sionkowska M. M.; Mazur O.; Świątczak J.; Brzezinska M. S. The role of microorganisms in biodegradation of chitosan/tannic acid materials. Int. J. Biol. Macromol., 2021, 184, 584-592. doi:10.1016/j.ijbiomac.2021.06.133http://dx.doi.org/10.1016/j.ijbiomac.2021.06.133
Kaur K.; Jindal R.; Jindal D. Controlled release of vitamin B1 and evaluation of biodegradation studies of chitosan and gelatin based hydrogels. Int. J. Biol. Macromol., 2020, 146, 987-999. doi:10.1016/j.ijbiomac.2019.09.223http://dx.doi.org/10.1016/j.ijbiomac.2019.09.223
Bae S. B.; Jeong J. E.; Park S. A.; Park W. H. Dual-crosslinked silk fibroin hydrogels with elasticity and cytocompatibility for the regeneration of articular cartilage. Polymer, 2021, 224, 123739. doi:10.1016/j.polymer.2021.123739http://dx.doi.org/10.1016/j.polymer.2021.123739
Kaparekar P. S.; Pathmanapan S.; Anandasadagopan S. K. Polymeric scaffold of Gallic acid loaded chitosan nanoparticles infused with collagen-fibrin for wound dressing application. Int. J. Biol. Macromol., 2020, 165, 930-947. doi:10.1016/j.ijbiomac.2020.09.212http://dx.doi.org/10.1016/j.ijbiomac.2020.09.212
国家市场监督管理总局, 国家标准化管理委员会. GB/T 38787-2020 塑料材料生物分解试验用样品制备方法. 北京: 中国标准出版社, 2020.
中华人民共和国国家质量监督检验检疫总局. GB/T 19275-2003 材料在特定微生物作用下潜在生物分解和崩解能力的评价. 北京: 中国标准出版社, 2003.
中华人民共和国国家质量监督检验检疫总局. GB/T 19276.1-2003 水性培养液中材料最终需氧生物分解能力的测定 采用测定密闭呼吸计中需氧量的方法. 北京: 中国标准出版社, 2003.
中华人民共和国国家质量监督检验检疫总局. GB/T 19276.2-2003 水性培养液中材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法. 北京: 中国标准出版社, 2003.
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 19277.1-2011 受控堆肥条件下材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 第1部分: 通用方法. 北京: 中国标准出版社, 2011.
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 19277.2-2013 受控堆肥条件下材料最终需氧生物分解能力的测定 采用测定释放的二氧化碳的方法 第2部分: 用重量分析法测定实验室条件下二氧化碳的释放量. 北京: 中国标准出版社, 2013.
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 22047-2008 土壤中塑料材料最终需氧生物分解能力的测定 采用测定密闭呼吸计中需氧量或测定释放的二氧化碳的方法. 北京: 中国标准出版社, 2008.
国家市场监督管理总局, 国家标准化管理委员会. GB/T 40367-2021 塑料暴露于海洋沉积物中非漂浮材料最终需氧生物分解能力的测定 通过分析释放的二氧化碳的方法.北京: 中国标准出版社, 2021.
国家市场监督管理总局, 国家标准化管理委员会. GB/T 40611-2021 塑料海水沙质沉积物界面非漂浮塑料材料最终需氧生物分解能力的测定 通过测定密闭呼吸计内耗氧量的方法. 北京: 中国标准出版社, 2021.
国家市场监督管理总局, 国家标准化管理委员会. GB/T 40612-2021 塑料海水沙质沉积物界面非漂浮塑料材料最终需氧生物分解能力的测定 通过测定释放二氧化碳的方法. 北京: 中国标准出版社, 2021.
Bonnenfant C.; Chatellard L.; Gontard N.; Aouf C. Effect of quercetin and Gallic acid on the microbial degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) materials. J. Polym. Environ., 2023, 31(4), 1478-1488. doi:10.1007/s10924-022-02708-7http://dx.doi.org/10.1007/s10924-022-02708-7
Šerá J.; Serbruyns L.; De Wilde B.; Koutný M. Accelerated biodegradation testing of slowly degradable polyesters in soil. Polym. Degrad. Stabil., 2020, 171, 109031. doi:10.1016/j.polymdegradstab.2019.109031http://dx.doi.org/10.1016/j.polymdegradstab.2019.109031
安振华, 叶焱, 许治平, 杨睿. 聚烯烃老化的时空谱: 多因素耦合老化动力学研究. 高分子学报, 2021, 52(11), 1514-1522. doi:10.11777/j.issn1000-3304.2020.20150http://dx.doi.org/10.11777/j.issn1000-3304.2020.20150
Cheng J. G.; Eyheraguibel B.; Jacquin J.; Pujo-Pay M.; Conan P.; Barbe V.; Hoypierres J.; Deligey G.; Halle A. T.; Bruzaud S.; Ghiglione J. F.; Meistertzheim A. L. Biodegradability under marine conditions of bio-based and petroleum-based polymers as substitutes of conventional microparticles. Polym. Degrad. Stabil., 2022, 206, 110159. doi:10.1016/j.polymdegradstab.2022.110159http://dx.doi.org/10.1016/j.polymdegradstab.2022.110159
Skariyachan S.; Patil A. A.; Shankar A.; Manjunath M.; Bachappanavar N.; Kiran S. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polym. Degrad. Stabil., 2018, 149, 52-68. doi:10.1016/j.polymdegradstab.2018.01.018http://dx.doi.org/10.1016/j.polymdegradstab.2018.01.018
Hakkou K.; Molina-Pinilla I.; Rangel-Núñez C.; Suárez-Cruz A.; Pajuelo E.; Bueno-Martínez M. Synthesis of novel (bio) degradable linear azo polymers conjugated with olsalazine. Polym. Degrad. Stabil., 2019, 167, 302-312. doi:10.1016/j.polymdegradstab.2019.07.013http://dx.doi.org/10.1016/j.polymdegradstab.2019.07.013
Iqbal S.; Nadeem S.; Bano R.; Bahadur A.; Ahmad Z.; Javed M.; AL-Anazy M. M.; Qasier A. A.; Laref A.; Shoaib M.; Liu G. C.; Qayyum M. A. Green synthesis of biodegradable terpolymer modified starch nanocomposite with carbon nanoparticles for food packaging application. J. Appl. Polym. Sci., 2021, 138(25), 50604. doi:10.1002/app.50604http://dx.doi.org/10.1002/app.50604
Šašinková D.; Serbruyns L.; Julinová M.; FayyazBakhsh A.; De Wilde B.; Koutný M. Evaluation of the biodegradation of polymeric materials in the freshwater environment—an attempt to prolong and accelerate the biodegradation experiment. Polym. Degrad. Stabil., 2022, 203, 110085. doi:10.1016/j.polymdegradstab.2022.110085http://dx.doi.org/10.1016/j.polymdegradstab.2022.110085
Liu J. W.; Liu J. Y.; Xu B.; Xu A. M.; Cao S. X.; Wei R.; Zhou J.; Jiang M.; Dong W. L. Biodegradation of polyether-polyurethane foam in yellow mealworms (Tenebrio molitor) and effects on the gut microbiome. Chemosphere, 2022, 304, 135263. doi:10.1016/j.chemosphere.2022.135263http://dx.doi.org/10.1016/j.chemosphere.2022.135263
Ganesh Kumar A.; Hinduja M.; Sujitha K.; Nivedha Rajan N.; Dharani G. Biodegradation of polystyrene by deep-sea Bacillus paralicheniformis G1 and genome analysis. Sci. Total Environ., 2021, 774, 145002. doi:10.1016/j.scitotenv.2021.145002http://dx.doi.org/10.1016/j.scitotenv.2021.145002
Syranidou E.; Karkanorachaki K.; Amorotti F.; Avgeropoulos A.; Kolvenbach B.; Zhou N. Y.; Fava F.; Corvini P. F. X.; Kalogerakis N. Biodegradation of mixture of plastic films by tailored marine consortia. J. Hazard. Mater., 2019, 375, 33-42. doi:10.1016/j.jhazmat.2019.04.078http://dx.doi.org/10.1016/j.jhazmat.2019.04.078
Kadoya R.; Tanaka N.; Fujita N.; Shiwa Y.; Taguchi S. Changed bacterial community in the river water samples upon introduction of biodegradable poly(3-hydroxybutyrate). Polym. Degrad. Stabil., 2020, 176, 109144. doi:10.1016/j.polymdegradstab.2020.109144http://dx.doi.org/10.1016/j.polymdegradstab.2020.109144
Prudnikova S. V.; Evgrafova S. Y.; Volova T. G. Metabolic activity of cryogenic soils in the subarctic zone of Siberia towards "green" bioplastics. Chemosphere, 2021, 263, 128180. doi:10.1016/j.chemosphere.2020.128180http://dx.doi.org/10.1016/j.chemosphere.2020.128180
Soulenthone P.; Tachibana Y.; Muroi F.; Suzuki M.; Ishii N.; Ohta Y.; Kasuya K. I. Characterization of a mesophilic actinobacteria that degrades poly(butylene adipate-co-terephthalate). Polym. Degrad. Stabil., 2020, 181, 109335. doi:10.1016/j.polymdegradstab.2020.109335http://dx.doi.org/10.1016/j.polymdegradstab.2020.109335
Białkowska A.; Bakar M.; Marchut-Mikołajczyk O. Biodegradation of linear and branched nonisocyanate condensation polyurethanes based on 2-hydroxy-naphthalene-6-sulfonic acid and phenol sulfonic acid. Polym. Degrad. Stabil., 2019, 159, 98-106. doi:10.1016/j.polymdegradstab.2018.11.011http://dx.doi.org/10.1016/j.polymdegradstab.2018.11.011
Maldonado L. F.; Muñoz P. A. R.; Fechine G. J. M. Transfer of graphene CVD to surface of low density polyethylene (LDPE) and poly(butylene adipate-co-terephthalate) (PBAT) films: effect on biodegradation process. J. Polym. Environ., 2018, 26(8), 3187-3196. doi:10.1007/s10924-018-1202-yhttp://dx.doi.org/10.1007/s10924-018-1202-y
Gunawan N. R.; Tessman M.; Zhen D.; Johnson L.; Evans P.; Clements S. M.; Pomeroy R. S.; Burkart M. D.; Simkovsky R.; Mayfield S. P. Biodegradation of renewable polyurethane foams in marine environments occurs through depolymerization by marine microorganisms. Sci. Total Environ., 2022, 850, 158761. doi:10.1016/j.scitotenv.2022.158761http://dx.doi.org/10.1016/j.scitotenv.2022.158761
Swiontek Brzezinska M.; Walczak M.; Kalwasińska A.; Richert A.; Świątczak J.; Deja-Sikora E.; Burkowska-But A. Biofilm formation during biodegradation of polylactide, poly(3,4 hydroxybutyrate) and poly(ε-caprolactone) in activated sludge. Int. J. Biol. Macromol., 2020, 159, 539-546. doi:10.1016/j.ijbiomac.2020.05.107http://dx.doi.org/10.1016/j.ijbiomac.2020.05.107
Mohammadi S.; Moussavi G.; Rezaei M. Enhanced peroxidase-mediated biodegradation of polyethylene using the bacterial consortia under H2O2-biostimulation. Polymer, 2022, 240, 124508. doi:10.1016/j.polymer.2021.124508http://dx.doi.org/10.1016/j.polymer.2021.124508
Wang S.; Shi W.; Huang Z. C.; Zhou N. H.; Xie Y. L.; Tang Y.; Hu F. L.; Liu G. X.; Zheng H. Q. Complete digestion/biodegradation of polystyrene microplastics by greater wax moth (Galleria mellonella) larvae: Direct in vivo evidence, gut microbiota independence, and potential metabolic pathways. J. Hazard. Mater., 2022, 423, 127213. doi:10.1016/j.jhazmat.2021.127213http://dx.doi.org/10.1016/j.jhazmat.2021.127213
Shetty P.; Dsilva P.; Sondar P.; Kumar B. G.; Hegde S. Biodegradation of PEEK piston rings. Polym. Degrad. Stabil., 2021, 191, 109666. doi:10.1016/j.polymdegradstab.2021.109666http://dx.doi.org/10.1016/j.polymdegradstab.2021.109666
Sharma S.; Majumdar A.; Butola B. S. Tailoring the biodegradability of polylactic acid (PLA) based films and ramie- PLA green composites by using selective additives. Int. J. Biol. Macromol., 2021, 181, 1092-1103. doi:10.1016/j.ijbiomac.2021.04.108http://dx.doi.org/10.1016/j.ijbiomac.2021.04.108
Adamcová D.; Zloch J.; Brtnický M.; Vaverková M. D. Biodegradation/disintegration of selected range of polymers: impact on the compost quality. J. Polym. Environ., 2019, 27(4), 892-899. doi:10.1007/s10924-019-01393-3http://dx.doi.org/10.1007/s10924-019-01393-3
Bankeeree W.; Samathayanon C.; Prasongsuk S.; Lotrakul P.; Kiatkamjornwong S. Rapid degradation of superabsorbent poly(potassium acrylate) and its acrylamide copolymer via thermo-oxidation by hydrogen peroxide. J. Polym. Environ., 2021, 29(12), 3964-3976. doi:10.1007/s10924-021-02167-6http://dx.doi.org/10.1007/s10924-021-02167-6
Yang S. S.; Ding M. Q.; Ren X. R.; Zhang Z. R.; Li M. X.; Zhang L. L.; Pang J. W.; Chen C. X.; Zhao L.; Xing D. F.; Ren N. Q.; Ding J.; Wu W. M. Impacts of physical-chemical property of polyethylene on depolymerization and biodegradation in yellow and dark mealworms with high purity microplastics. Sci. Total Environ., 2022, 828, 154458. doi:10.1016/j.scitotenv.2022.154458http://dx.doi.org/10.1016/j.scitotenv.2022.154458
Tateiwa J.; Kimura S.; Kasuya K. I.; Iwata T. Multilayer biodegradable films with a degradation initiation function triggered by weakly alkaline seawater. Polym. Degrad. Stabil., 2022, 200, 109942. doi:10.1016/j.polymdegradstab.2022.109942http://dx.doi.org/10.1016/j.polymdegradstab.2022.109942
Burelo M.; Gaytán I.; Loza-Tavera H.; Cruz-Morales J. A.; Zárate-Saldaña D.; Cruz-Gómez M. J.; Gutiérrez S. Synthesis, characterization and biodegradation studies of polyurethanes: Effect of unsaturation on biodegradability. Chemosphere, 2022, 307, 136136. doi:10.1016/j.chemosphere.2022.136136http://dx.doi.org/10.1016/j.chemosphere.2022.136136
Karimi-Avargani M.; Bazooyar F.; Biria D.; Zamani A.; Skrifvars M. The promiscuous potential of cellulase in degradation of polylactic acid and its jute composite. Chemosphere, 2021, 278, 130443. doi:10.1016/j.chemosphere.2021.130443http://dx.doi.org/10.1016/j.chemosphere.2021.130443
Kwiecien I.; Adamus G.; Jiang G. Z.; Radecka I.; Baldwin T. C.; Khan H. R.; Johnston B.; Pennetta V.; Hill D.; Bretz I.; Kowalczuk M. Biodegradable PBAT/PLA blend with bioactive MCPA-PHBV conjugate suppresses weed growth. Biomacromolecules, 2018, 19(2), 511-520. doi:10.1021/acs.biomac.7b01636http://dx.doi.org/10.1021/acs.biomac.7b01636
Chen Z.; Zhao W. Q.; Xing R. Z.; Xie S. J.; Yang X. G.; Cui P.; Lü J.; Liao H. P.; Yu Z.; Wang S. H.; Zhou S. G. Enhanced in situ biodegradation of microplastics in sewage sludge using hyperthermophilic composting technology. J. Hazard. Mater., 2020, 384, 121271. doi:10.1016/j.jhazmat.2019.121271http://dx.doi.org/10.1016/j.jhazmat.2019.121271
Grivalský T.; Rychlý J.; Rychlá L.; Bučková M.; Kraková L.; Puškárová A.; Orovčík Ľ.; Pangallo D. Aerobic biodegradation of aromatic aliphatic copolyester induced by bacteria obtained from different environments. J. Polym. Environ., 2018, 26(2), 680-690. doi:10.1007/s10924-017-0980-yhttp://dx.doi.org/10.1007/s10924-017-0980-y
Tsochatzis E. D.; Berggreen I. E.; Nørgaard J. V.; Theodoridis G.; Dalsgaard T. K. Biodegradation of expanded polystyrene by mealworm larvae under different feeding strategies evaluated by metabolic profiling using GC-TOF-MS. Chemosphere, 2021, 281, 130840. doi:10.1016/j.chemosphere.2021.130840http://dx.doi.org/10.1016/j.chemosphere.2021.130840
Xu Z. P.; Ye Y.; Tang G. S.; Liu Y.; Yang R. Effect of alkylated surface modified silica nanoparticles on degradation products of PP during photooxidation aging: a Py-GC-MS analysis. J. Anal. Appl. Pyrolysis, 2023, 169, 105862. doi:10.1016/j.jaap.2023.105862http://dx.doi.org/10.1016/j.jaap.2023.105862
Gil-Castell O.; Badia J. D.; Ingles-Mascaros S.; Teruel-Juanes R.; Serra A.; Ribes-Greus A. Polylactide-based self-reinforced composites biodegradation: individual and combined influence of temperature, water and compost. Polym. Degrad. Stabil., 2018, 158, 40-51. doi:10.1016/j.polymdegradstab.2018.10.017http://dx.doi.org/10.1016/j.polymdegradstab.2018.10.017
Xie J. Z.; Yan Y.; Fan S. H.; Min X. Y.; Wang L.; You X. Q.; Jia X. F.; Waterhouse G. I. N.; Wang J.; Xu J. Prediction model of photodegradation for PBAT/PLA mulch films: strategy to fast evaluate service life. Environ. Sci. Technol., 2022, 56(12), 9041-9051. doi:10.1021/acs.est.2c01687http://dx.doi.org/10.1021/acs.est.2c01687
Bujok S.; Peter J.; Halecký M.; Ecorchard P.; Machálková A.; Santos Medeiros G.; Hodan J.; Pavlova E.; Beneš H. Sustainable microwave synthesis of biodegradable active packaging films based on polycaprolactone and layered ZnO nanoparticles. Polym. Degrad. Stabil., 2021, 190, 109625. doi:10.1016/j.polymdegradstab.2021.109625http://dx.doi.org/10.1016/j.polymdegradstab.2021.109625
Potrykus M.; Redko V.; Głowacka K.; Piotrowicz-Cieślak A.; Szarlej P.; Janik H.; Wolska L. Polypropylene structure alterations after 5 years of natural degradation in a waste landfill. Sci. Total Environ., 2021, 758, 143649. doi:10.1016/j.scitotenv.2020.143649http://dx.doi.org/10.1016/j.scitotenv.2020.143649
Rangel A.; Nguyen T. N.; Egles C.; Migonney V. Different real-time degradation scenarios of functionalized poly(ε-caprolactone) for biomedical applications. J. Appl. Polym. Sci., 2021, 138(17), 50479. doi:10.1002/app.50479http://dx.doi.org/10.1002/app.50479
Santos Filho E. A.; Siqueira D. D.; Araújo E. M.; Luna C. B. B.; Medeiros E. P. The impact of the macaíba components addition on the biodegradation acceleration of poly(ε-caprolactone) (PCL). J. Polym. Environ., 2022, 30(2), 443-460. doi:10.1007/s10924-021-02215-1http://dx.doi.org/10.1007/s10924-021-02215-1
Guidotti G.; Gigli M.; Soccio M.; Lotti N.; Salatelli E.; Gazzano M.; Siracusa V.; Munari A. Tailoring poly(butylene 2,5-thiophenedicarboxylate) features by the introduction of adipic acid co-units: biobased and biodegradable aliphatic/aromatic polyesters. Polymer, 2018, 145, 11-20. doi:10.1016/j.polymer.2018.04.063http://dx.doi.org/10.1016/j.polymer.2018.04.063
Adorna, J.A; Ventura, R. L.G; Dang, V. D.; Doong, R. A.; Ventura, J. R.S Biodegradable polyhydroxybutyrate/cellulose/calcium carbonate bioplastic composites prepared by heat-assisted solution casting method. J. Appl. Polym. Sci., 2022, 139(7), 51645. doi:10.1002/app.51645http://dx.doi.org/10.1002/app.51645
Huang D.; Liu T.; Nie Y.; Lu B.; Zhen Z.; Xu P.; Wang G.; Zou G.; Ji J. Trickily designed copolyesters degraded in both land and sea - confirmed by the successful capture of degradation end product CO2. Polym. Degrad. Stabil. 2022, 196, 109817. doi:10.1016/j.polymdegradstab.2022.109817http://dx.doi.org/10.1016/j.polymdegradstab.2022.109817
Araque L. M.; Alves T. S.; Barbosa R. Biodegradation of polyhydroxybutyrate and hollow glass microspheres composite films. J. Appl. Polym. Sci., 2019, 136(11), 47195. doi:10.1002/app.47195http://dx.doi.org/10.1002/app.47195
Iuliano A.; Fabiszewska A.; Kozik K.; Rzepna M.; Ostrowska J.; Dębowski M.; Plichta A. Effect of electron-beam radiation and other sterilization techniques on structural, mechanical and microbiological properties of thermoplastic starch blend. J. Polym. Environ., 2021, 29(5), 1489-1504. doi:10.1007/s10924-020-01972-9http://dx.doi.org/10.1007/s10924-020-01972-9
Lee D.; Sun Y. F.; Youe W. J.; Gwon J.; Cheng H. N.; Wu Q. L. 3D-printed wood-polylactic acid-thermoplastic starch composites: Performance features in relation to biodegradation treatment. J. Appl. Polym. Sci., 2021, 138(36), 50914. doi:10.1002/app.50914http://dx.doi.org/10.1002/app.50914
Anunciado M. B.; Hayes D. G.; Wadsworth L. C.; English M. E.; Schaeffer S. M.; Sintim H. Y.; Flury M. Impact of agricultural weathering on physicochemical properties of biodegradable plastic mulch films: comparison of two diverse climates over four successive years. J. Polym. Environ., 2021, 29(1), 1-16. doi:10.1007/s10924-020-01853-1http://dx.doi.org/10.1007/s10924-020-01853-1
Nanni A.; Ricci A.; Versari A.; Messori M. Wine derived additives as poly(butylene succinate) (PBS) natural stabilizers for different degradative environments. Polym. Degrad. Stabil., 2020, 182, 109381. doi:10.1016/j.polymdegradstab.2020.109381http://dx.doi.org/10.1016/j.polymdegradstab.2020.109381
Radu E. R.; Panaitescu D. M.; Nicolae C. A.; Gabor R. A.; Rădiţoiu V.; Stoian S.; Alexandrescu E.; Fierăscu R.; Chiulan I. The soil biodegradability of structured composites based on cellulose cardboard and blends of polylactic acid and polyhydroxybutyrate. J. Polym. Environ., 2021, 29(7), 2310-2320. doi:10.1007/s10924-020-02017-xhttp://dx.doi.org/10.1007/s10924-020-02017-x
Chen Q. Y.; Ye Z. B.; Xu H. W.; Wang Y. Q.; Lai N. J. Study on the biodegradability of a chitosan-modified hyperbranched polymer for enhanced oil recovery. J. Appl. Polym. Sci., 2022, 139(1), 51425. doi:10.1002/app.51425http://dx.doi.org/10.1002/app.51425
0
Views
169
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution