浏览全部资源
扫码关注微信
1.清华大学,化学系 有机光电子与分子工程教育部重点实验室,北京 100084
2.清华大学,致理书院,北京 100084
Published:20 October 2023,
Published Online:30 August 2023,
Received:25 April 2023,
Accepted:11 July 2023
扫 描 看 全 文
周硕,杨松铭,袁金颖.基于二氧化碳响应的聚合物及复合材料的构建与功能[J].高分子学报,2023,54(10):1409-1425.
Zhou Shuo,Yang Song-ming,Yuan Jin-ying.Construction and Function of CO2-Switchable Polymers and Composites[J].ACTA POLYMERICA SINICA,2023,54(10):1409-1425.
周硕,杨松铭,袁金颖.基于二氧化碳响应的聚合物及复合材料的构建与功能[J].高分子学报,2023,54(10):1409-1425. DOI: 10.11777/j.issn1000-3304.2023.23113.
Zhou Shuo,Yang Song-ming,Yuan Jin-ying.Construction and Function of CO2-Switchable Polymers and Composites[J].ACTA POLYMERICA SINICA,2023,54(10):1409-1425. DOI: 10.11777/j.issn1000-3304.2023.23113.
CO
2
响应聚合物是一类可以对CO
2
气体和溶液做出响应的聚合物. 与CO
2
反应后聚合物的亲疏水和电荷等性质发生改变,通过氩气、氮气或空气的通入,或略微加热,可以实现CO
2
的去除,使聚合物及复合材料性质完全或部分恢复. 本文回顾了基于CO
2
响应的聚合物及复合材料的近年发展,从化学结构与响应基团出发介绍了不同类型的响应聚合物,包括脒基类、叔胺基类、胍基类和咪唑类,并对常见CO
2
响应聚合物的单体进行了总结. 介绍了CO
2
响应聚合物的不同功能,从组装体的角度出发讨论了囊泡、球形胶束和复合组装体及其他形貌的不同性质,同时逐级深入,总结了乳胶、气凝胶与水凝胶、功能表面与纳米纤维膜、有机无机杂化材料与复合材料和荧光传感与监测体系的构建及效果. 最后对于该领域还需继续探索优化的问题进行了讨论与总结,对未来的发展方向进行了展望.
CO
2
-responsive polymers are a class of polymers that can respond to CO
2
gases and solutions. The reaction with CO
2
changes the properties of the polymer such as hydrophobicity and charge. By introducing argon
nitrogen and air
or by slightly heating
CO
2
can be removed and the properties of the polymer and composite material can be fully or partially restored. This review summarizes the recent development of CO
2
-responsive polymers and composites
introduces different types of responsive polymers from chemical structures and responsive groups
including amidines
tertiary amines
guanidines and imidazoles
and summarizes the monomers of common CO
2
-responsive polymers. The different functions of CO
2
-responsive polymers are introduced. Different properties of vesicles
spherical micelles and composite assemblies and other morphologies are discussed from the viewpoint of assemblies
while the construction and effects of emulsions
aerogels and hydrogels
functional surfaces and nanofiber membranes
organic-inorganic hybrid materials and composites
and fluorescence sensing and monitoring systems are summarized progressively. Finally
the problems that need to be explored and optimized in this field are discussed
and the future development direction is foreseen.
CO2响应环境响应聚合物组装体亲疏水性传感
CO2-switchableEnvironmental responsePolymer assembliesHydrophobic and hydrophilic performanceSensor
Stuart M. A. C.; Huck W. T. S.; Genzer J.; Müller M.; Ober C.; Stamm M.; Sukhorukov G. B.; Szleifer I.; Tsukruk V. V.; Urban M.; Winnik F.; Zauscher S.; Luzinov I.; Minko S. Emerging applications of stimuli-responsive polymer materials. Nat. Mater., 2010, 9(2), 101-113. doi:10.1038/nmat2614http://dx.doi.org/10.1038/nmat2614
Roy D.; Cambre J. N.; Sumerlin B. S. Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci., 2010, 35(1-2), 278-301. doi:10.1016/j.progpolymsci.2009.10.008http://dx.doi.org/10.1016/j.progpolymsci.2009.10.008
Jeong B.; Gutowska A. Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol., 2002, 20(7), 305-311. doi:10.1016/s0167-7799(02)01962-5http://dx.doi.org/10.1016/s0167-7799(02)01962-5
Gil E. S.; Hudson S. M. Stimuli-reponsive polymers and their bioconjugates. Prog. Polym. Sci., 2004, 29(12), 1173-1222. doi:10.1016/j.progpolymsci.2004.08.003http://dx.doi.org/10.1016/j.progpolymsci.2004.08.003
Lin, S. J.; Theato, P. CO2-responsive polymers. Macromol. Rapid Commun., 2013, 34(14), 1118-1133. doi:10.1002/marc.201300288http://dx.doi.org/10.1002/marc.201300288
Yan Q.; Zhao Y. Block copolymer self-assembly controlled by the "green" gas stimulus of carbon dioxide. Chem. Commun., 2014, 50(79), 11631-11641. doi:10.1039/c4cc03412khttp://dx.doi.org/10.1039/c4cc03412k
Darabi A.; Jessop P. G.; Cunningham M. F. CO2-responsive polymeric materials: synthesis, self-assembly, and functional applications. Chem. Soc. Rev., 2016, 45(15), 4391-4436. doi:10.1039/c5cs00873ehttp://dx.doi.org/10.1039/c5cs00873e
Liu H. B.; Lin S. J.; Feng Y. J.; Theato P. CO2-responsive polymer materials. Polym. Chem., 2017, 8(1), 12-23. doi:10.1039/c6py01101bhttp://dx.doi.org/10.1039/c6py01101b
Yu L. L.; Zhang Y. X.; Dai X. C.; Xu Q.; Zhang L.; Tan J. B. Open-air preparation of cross-linked CO2-responsive polymer vesicles by enzyme-assisted photoinitiated polymerization-induced self-assembly. Chem. Commun., 2019, 55(79), 11920-11923. doi:10.1039/c9cc05812ehttp://dx.doi.org/10.1039/c9cc05812e
Zeng R. J.; Chen L.; Yan Q. CO2-folded single-chain nanoparticles as recyclable, improved carboxylase mimics. Angew. Chem. Int. Ed., 2020, 59(42), 18418-18422. doi:10.1002/anie.202006842http://dx.doi.org/10.1002/anie.202006842
Wang, Y. X.; Yan, Q. CO2-fueled transient breathing nanogels that couple nonequilibrium catalytic polymerization. Angew. Chem. Int. Ed., 2023, 62(14), e202217001. doi:10.1002/anie.202217001http://dx.doi.org/10.1002/anie.202217001
Jansen-van Vuuren R. D.; Naficy S.; Ramezani M.; Cunningham M.; Jessop P. CO2-responsive gels. Chem. Soc. Rev., 2023, 52(10), 3470-3542. doi:10.1039/d2cs00053ahttp://dx.doi.org/10.1039/d2cs00053a
Yan Q.; Zhou R.; Fu C. K.; Zhang H. J.; Yin Y. W.; Yuan J. Y. CO2-responsive polymeric vesicles that breathe. Angew. Chem. Int. Ed., 2011, 50(21), 4923-4927. doi:10.1002/anie.201100708http://dx.doi.org/10.1002/anie.201100708
Yan Q.; Wang J. B.; Yin Y. W.; Yuan J. Y. Breathing polymersomes: CO2-tuning membrane permeability for size-selective release, separation, and reaction. Angew. Chem. Int. Ed., 2013, 125(19), 5174-5177. doi:10.1002/ange.201300397http://dx.doi.org/10.1002/ange.201300397
Guo Z. R.; Feng Y. J.; Wang Y.; Wang J. Y.; Wu Y. F.; Zhang Y. M. A novel smart polymer responsive to CO2. Chem. Commun., 2011, 47(33), 9348-9350. doi:10.1039/c1cc12388bhttp://dx.doi.org/10.1039/c1cc12388b
Hampe E. M.; Rudkevich D. M. Exploring reversible reactions between CO2 and amines. Tetrahedron, 2003, 59(48), 9619-9625. doi:10.1016/j.tet.2003.09.096http://dx.doi.org/10.1016/j.tet.2003.09.096
Song Z. F.; Wang K.; Gao C. Q.; Wang S.; Zhang W. Q. A new thermo-, pH-, and CO2-responsive homopolymer of poly[N-[2-(diethylamino)ethyl]acrylamide]: Is the diethylamino group underestimated? Macromolecules, 2016, 49(1), 162-171. doi:10.1021/acs.macromol.5b02458http://dx.doi.org/10.1021/acs.macromol.5b02458
Yan, Q.; Zhao, Y. CO2-stimulated diversiform deformations of polymer assemblies. J. Am. Chem. Soc., 2013, 135(44), 16300-16303. doi:10.1021/ja408655nhttp://dx.doi.org/10.1021/ja408655n
Yan Q.; Zhao Y. Polymeric microtubules that breathe: CO2-driven polymer controlled-self-assembly and shape transformation. Angew. Chem. Int. Ed., 2013, 52(38), 9948-9951. doi:10.1002/anie.201303984http://dx.doi.org/10.1002/anie.201303984
Zeng M.; Huo M.; Feng Y. J.; Yuan J. Y. CO2-breathing polymer assemblies via one-pot sequential RAFT dispersion polymerization. Macromol. Rapid Commun., 2018, 39(15), 1800291. doi:10.1002/marc.201800291http://dx.doi.org/10.1002/marc.201800291
Tang J. T.; Quinlan P. J.; Tam K. C. Stimuli-responsive pickering emulsions: recent advances and potential applications. Soft Matter, 2015, 11(18), 3512-3529. doi:10.1039/c5sm00247hhttp://dx.doi.org/10.1039/c5sm00247h
Guo Z. R.; Feng Y. J.; He S.; Qu M. Z.; Chen H. L.; Liu H. B.; Wu Y. F.; Wang Y. CO2-responsive "smart" single-walled carbon nanotubes. Adv. Mater., 2013, 25(4), 584-590. doi:10.1002/adma.201202991http://dx.doi.org/10.1002/adma.201202991
Wei H. B.; Zhang J. L.; Shi N.; Liu Y.; Zhang B.; Zhang J.; Wan X. H. A recyclable polyoxometalate-based supramolecular chemosensor for efficient detection of carbon dioxide. Chem. Sci., 2015, 6(12), 7201-7205. doi:10.1039/c5sc02020dhttp://dx.doi.org/10.1039/c5sc02020d
Wang Y.; Huo M.; Zeng M.; Liu L.; Ye Q. Q.; Chen X.; Li D.; Peng L.; Yuan J. Y. CO2-responsive polymeric fluorescent sensor with ultrafast response. Chinese J. Polym. Sci., 2018, 36(12), 1321-1327. doi:10.1007/s10118-018-2167-yhttp://dx.doi.org/10.1007/s10118-018-2167-y
Feng A. C.; Liang J. M.; Ji J. Z.; Dou J. B.; Wang S. F.; Yuan J. Y. CO2-breathing and piercing polymersomes as tunable and reversible nanocarriers. Sci. Rep., 2016, 6, 23624. doi:10.1038/srep23624http://dx.doi.org/10.1038/srep23624
Huo M.; Ye Q. Q.; Che H. L.; Sun M. Z.; Yuan J. Y.; Wei Y. Synthesis and self-assembly of CO2-responsive dendronized triblock copolymers. Polym. Chem., 2015, 6(42), 7427-7435. doi:10.1039/c5py00868ahttp://dx.doi.org/10.1039/c5py00868a
Huo M.; Du H. T.; Zeng M.; Pan L.; Fang T.; Xie X. M.; Wei Y.; Yuan J. Y. CO2-stimulated morphology transition of ABC miktoarm star terpolymer assemblies. Polym. Chem., 2017, 8(18), 2833-2840. doi:10.1039/c7py00214ahttp://dx.doi.org/10.1039/c7py00214a
Feng A. C.; Zhan C. B.; Yan Q.; Liu B. W.; Yuan J. Y. A CO2- and temperature-switchable "schizophrenic" block copolymer: from vesicles to micelles. Chem. Commun., 2014, 50(64), 8958-8961. doi:10.1039/c4cc03156chttp://dx.doi.org/10.1039/c4cc03156c
Mu M.; Yuan R.; Zhang G. H.; Wu D. G.; Quan H. P.; Han P. H.; Feng Y. J. Tuning CO2-induced reversible redispersion or irreversible destabilisation for latex separation. J. Colloid Interface Sci., 2020, 573, 250-262. doi:10.1016/j.jcis.2020.03.121http://dx.doi.org/10.1016/j.jcis.2020.03.121
Kumar S.; Tong X.; Dory Y. L.; Lepage M.; Zhao Y. A CO2-switchable polymer brush for reversible capture and release of proteins. Chem. Commun., 2013, 49(1), 90-92. doi:10.1039/c2cc36284hhttp://dx.doi.org/10.1039/c2cc36284h
Zhang J. M.; Han D. H.; Zhang H. J.; Chaker M.; Zhao Y.; Ma D. L. In situ recyclable gold nanoparticles using CO2-switchable polymers for catalytic reduction of 4-nitrophenol. Chem. Commun., 2012, 48(94), 11510-11512. doi:10.1039/c2cc35784dhttp://dx.doi.org/10.1039/c2cc35784d
Feng A. C.; Wang Y.; Peng L.; Wang X. S.; Yuan J. Y. Breathing catalyst-supports: CO2 adjustable and magnetic recyclable "smart" hybrid nanoparticles. RSC Adv., 2016, 6(99), 97030-97035. doi:10.1039/c6ra22762ghttp://dx.doi.org/10.1039/c6ra22762g
Guo J.; Wang N. J.; Wu J. J.; Ye Q. Q.; Zhang C.; Xing X. H.; Yuan J. Y. Hybrid nanoparticles with CO2-responsive shells and fluorescence-labelled magnetic cores. J. Mater. Chem. B, 2014, 2(4), 437-442. doi:10.1039/c3tb21264ehttp://dx.doi.org/10.1039/c3tb21264e
Zhang D. P.; Fan Y. J.; Chen H.; Trépout S.; Li M. H. CO2-activated reversible transition between polymersomes and micelles with AIE fluorescence. Angew. Chem. Int. Ed., 2019, 58(30), 10260-10265. doi:10.1002/anie.201905089http://dx.doi.org/10.1002/anie.201905089
Che H. L.; Huo M.; Peng L.; Fang T.; Liu N.; Feng L.; Wei Y.; Yuan J. Y. CO2-responsive nanofibrous membranes with switchable oil/water wettability. Angew. Chem. Int. Ed., 2015, 54(31), 8934-8938. doi:10.1002/anie.201501034http://dx.doi.org/10.1002/anie.201501034
van de Wetering P.; Moret E. E.; Schuurmans-Nieuwenbroek N. M. E.; van Steenbergen M. J.; Hennink W. E. Structure-activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery. Bioconjugate Chem., 1999, 10(4), 589-597. doi:10.1021/bc980148whttp://dx.doi.org/10.1021/bc980148w
Fang T.; Wan Z. Y.; Huo M.; Yuan J. Y. "Solid emulsion": gas-switchable latex system with reversible coagulability and redispersibility. Adv. Sustainable Syst., 2017, 1(7), 1700051. doi:10.1002/adsu.201700051http://dx.doi.org/10.1002/adsu.201700051
Sundberg R. J.; Martin R. B. Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems. Chem. Rev., 1974, 74(4), 471-517. doi:10.1021/cr60290a003http://dx.doi.org/10.1021/cr60290a003
Pinaud J.; Vignolle J.; Gnanou Y.; Taton D. Poly(N-heterocyclic-carbene)s and their CO2 adducts as recyclable polymer-supported organocatalysts for benzoin condensation and transesterification reactions. Macromolecules, 2011, 44(7), 1900-1908. doi:10.1021/ma1024285http://dx.doi.org/10.1021/ma1024285
Han D. H.; Tong X. A.; Boissière O.; Zhao Y. E. General strategy for making CO2-switchable polymers. ACS Macro Lett., 2012, 1(1), 57-61. doi:10.1021/mz2000175http://dx.doi.org/10.1021/mz2000175
Liu B. W.; Zhou H.; Zhou S. T.; Zhang H. J.; Feng A. C.; Jian C. M.; Hu J.; Gao W. P.; Yuan J. Y. Synthesis and self-assembly of CO2-temperature dual stimuli-responsive triblock copolymers. Macromolecules, 2014, 47(9), 2938-2946. doi:10.1021/ma5001404http://dx.doi.org/10.1021/ma5001404
Xu M. M.; Chen L.; Yan Q. Gas-constructed vesicles with gas-moldable membrane architectures. Angew. Chem. Int. Ed., 2020, 59(35), 15104-15108. doi:10.1002/anie.201907063http://dx.doi.org/10.1002/anie.201907063
Liu H. B.; Zhao Y.; Dreiss C. A.; Feng Y. J. CO2-switchable multi-compartment micelles with segregated corona. Soft Matter, 2014, 10(34), 6387-6391. doi:10.1039/c4sm01207khttp://dx.doi.org/10.1039/c4sm01207k
Che H. L.; Yuan J. Y. CO2-responsive bowl-shaped polymersomes. Macromol. Res., 2017, 25(6), 635-639. doi:10.1007/s13233-017-5133-6http://dx.doi.org/10.1007/s13233-017-5133-6
Guo X. F.; Ji X. F.; Li X. H.; Du J. H.; Sun L. L.; Feng A. C.; Yuan J. Y.; Thang S. H. Gas-responsive self-assemblies for mimicking the alveoli. Macromol. Rapid Commun., 2021, 42(18), 2100019. doi:10.1002/marc.202100019http://dx.doi.org/10.1002/marc.202100019
Zhu J. N.; Gong Z. H.; Yang C. Q.; Yan Q. Reshaping membrane polymorphism of polymer vesicles through dynamic gas exchange. J. Am. Chem. Soc., 2021, 143(48), 20183-20191. doi:10.1021/jacs.1c07838http://dx.doi.org/10.1021/jacs.1c07838
Tang J.; Cao S. X.; Wang J. L. CO2-switchable pickering emulsions: efficient and tunable interfacial catalysis for alcohol oxidation in biphasic systems. Chem. Commun., 2019, 55(74), 11079-11082. doi:10.1039/c9cc04947ahttp://dx.doi.org/10.1039/c9cc04947a
Mihara M.; Jessop P.; Cunningham M. Redispersible polymer colloids using carbon dioxide as an external trigger. Macromolecules, 2011, 44(10), 3688-3693. doi:10.1021/ma200249qhttp://dx.doi.org/10.1021/ma200249q
袁金颖, 方立城, 万正一, 霍猛. CO2刺激响应的固态乳液. 中国专利, CN107043435B. 2019-03-22.
Qiu H. J.; Li J. Y.; Wang M. J.; Zhang H. J.; Shen J.; Xie J. D.; Wang Y. S.; Wu W. T. Insect-inspired strategy for conferring reversible, high responsivity on microgels to dilute-source CO2. ACS Macro Lett., 2023, 12(6), 767-772. doi:10.1021/acsmacrolett.3c00228http://dx.doi.org/10.1021/acsmacrolett.3c00228
Jia Y. G.; Zhang M.; Zhu X. X. CO2-switchable self-healing host-guest hydrogels. Macromolecules, 2017, 50(24), 9696-9701. doi:10.1021/acs.macromol.7b02163http://dx.doi.org/10.1021/acs.macromol.7b02163
Li Y. Z.; Zhu L. Q.; Grishkewich N.; Tam K. C.; Yuan J. Y.; Mao Z. P.; Sui X. F. CO2-responsive cellulose nanofibers aerogels for switchable oil-water separation. ACS Appl. Mater. Interfaces, 2019, 11(9), 9367-9373. doi:10.1021/acsami.8b22159http://dx.doi.org/10.1021/acsami.8b22159
Jansen-van Vuuren R. D.; Drechsler Vilela G.; Ramezani M.; Gilbert P. H.; Watson D.; Mullins N.; Lucas A. K.; Giacomin A. J.; Cunningham M. F.; Jessop P. G. CO2-responsive superabsorbent hydrogels capable of >90% dewatering when immersed in water. ACS Appl. Polym. Mater., 2021, 3(4), 2153-2165. doi:10.1021/acsapm.1c00136http://dx.doi.org/10.1021/acsapm.1c00136
Zhang Q.; Wang Z. W.; Lei L.; Tang J.; Wang J. L.; Zhu S. P. CO2-switchable membranes prepared by immobilization of CO2-breathing microgels. ACS Appl. Mater. Interfaces, 2017, 9(50), 44146-44151. doi:10.1021/acsami.7b15639http://dx.doi.org/10.1021/acsami.7b15639
Dong L. L.; Fan W. Z.; Zhang H. J.; Chen M. Q.; Zhao Y. CO2-Responsive polymer membranes with gas-tunable pore size. Chem. Commun., 2017, 53(69), 9574-9577. doi:10.1039/c7cc05291jhttp://dx.doi.org/10.1039/c7cc05291j
Dong L. L.; Fan W. Z.; Tong X.; Zhang H. J.; Chen M. Q.; Zhao Y. A CO2-responsive graphene oxide/polymer composite nanofiltration membrane for water purification. J. Mater. Chem. A, 2018, 6(16), 6785-6791. doi:10.1039/c8ta00623ghttp://dx.doi.org/10.1039/c8ta00623g
袁金颖, 车海龙, 霍猛. 彭了, 方立城, 刘娜, 冯琳, 危岩. 一种具有CO2刺激响应的油水分离纳米纤维膜及其制备方法与应用. 中国专利, CN201510242944.4. 2017-01-11.
Bordet A.; El Sayed S.; Sanger M.; Boniface K. J.; Kalsi D.; Luska K. L.; Jessop P. G.; Leitner W. Selectivity control in hydrogenation through adaptive catalysis using ruthenium nanoparticles on a CO2-responsive support. Nat. Chem., 2021, 13(9), 916-922. doi:10.1038/s41557-021-00735-whttp://dx.doi.org/10.1038/s41557-021-00735-w
Xu Y. L.; Sui X.; Guan S.; Zhai J.; Gao L. C. Olfactory sensory neuron-mimetic CO2 activated nanofluidic diode with fast response rate. Adv. Mater., 2015, 27(11), 1851-1855. doi:10.1002/adma.201405564http://dx.doi.org/10.1002/adma.201405564
Che H. L.; Huo M.; Peng L.; Ye Q. Q.; Guo J.; Wang K.; Wei Y.; Yuan J. Y. CO2-switchable drug release from magneto-polymeric nanohybrids. Polym. Chem., 2015, 6(12), 2319-2326. doi:10.1039/c4py01800ahttp://dx.doi.org/10.1039/c4py01800a
Xu L. Q.; Zhang B.; Sun M.; Hong L.; Neoh K. G.; Kang E. T.; Fu G. D. CO2-triggered fluorescence "turn-on" response of perylene diimide-containing poly(N,N-dimethylaminoethyl methacrylate). J. Mater. Chem. A, 2013, 1(4), 1207-1212. doi:10.1039/c2ta00482hhttp://dx.doi.org/10.1039/c2ta00482h
Liu Y.; Tang Y. H.; Barashkov N. N.; Irgibaeva I. S.; Lam J. W. Y.; Hu R. R.; Birimzhanova D.; Yu Y.; Tang B. Z. Fluorescent chemosensor for detection and quantitation of carbon dioxide gas. J. Am. Chem. Soc., 2010, 132(40), 13951-13953. doi:10.1021/ja103947jhttp://dx.doi.org/10.1021/ja103947j
Li Y.; Wu X.; Yang B.; Zhang X. K.; Li H.; Umar A.; Rooij N. F.; Zhou G. F.; Wang Y. Synergy of CO2 response and aggregation-induced emission in a block copolymer: a facile way to "see" cancer cells. ACS Appl. Mater. Interfaces, 2019, 11(40), 37077-37083. doi:10.1021/acsami.9b11945http://dx.doi.org/10.1021/acsami.9b11945
Qiu L.; Zhang H. R.; Wang B.; Zhan Y.; Xing C. F.; Pan C. Y. CO2-responsive nano-objects with assembly-related aggregation-induced emission and tunable morphologies. ACS Appl. Mater. Interfaces, 2020, 12(1), 1348-1358. doi:10.1021/acsami.9b18792http://dx.doi.org/10.1021/acsami.9b18792
0
Views
72
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution