浏览全部资源
扫码关注微信
1.青岛大学化学化工学院 青岛 266071
2.山东理工大学材料科学与工程学院 淄博 255000
Bing Yu, E-mail: yubing198@qdu.edu.cn
Hai-lin Cong, E-mail: conghailin@sdut.edu.cn
Published:20 October 2023,
Published Online:15 August 2023,
Received:23 May 2023,
Accepted:28 June 2023
扫 描 看 全 文
陈静,刘畅,于冰等.基于静电纺丝的类海绵体材料用于溶菌酶的吸附行为[J].高分子学报,2023,54(10):1632-1640.
Chen Jing,Liu Chang,Yu Bing,et al.Adsorption Behavior of Lysozyme by Sponge-like Materials Based on Electrospinning[J].ACTA POLYMERICA SINICA,2023,54(10):1632-1640.
陈静,刘畅,于冰等.基于静电纺丝的类海绵体材料用于溶菌酶的吸附行为[J].高分子学报,2023,54(10):1632-1640. DOI: 10.11777/j.issn1000-3304.2023.23114.
Chen Jing,Liu Chang,Yu Bing,et al.Adsorption Behavior of Lysozyme by Sponge-like Materials Based on Electrospinning[J].ACTA POLYMERICA SINICA,2023,54(10):1632-1640. DOI: 10.11777/j.issn1000-3304.2023.23114.
用SiO
2
纳米纤维作为三维结构刚性支撑框架,以聚乙烯醇(PVA)/丁烷四羧酸(BTCA)的酯化交联反应物为功能性有机黏合剂,制备了一种高度羧基化的海绵体整体吸附材料(PVA/BTCA多孔材料),得到的PVA/BTCA材料具有多孔结构. 作为一种吸附材料,通过水下循环压缩性能测试证明PVA/BTCA材料在水下拥有良好的结构稳定性. PVA/BTCA多孔材料的高度羧酸化和高孔隙率为蛋白吸附提供了基础条件,可以选择性吸附带正电荷的蛋白. 以溶菌酶为主要模型蛋白,PVA/BTCA多孔材料在pH=7时对溶菌酶的最大吸附量为1342.3 mg/g,PVA/BTCA多孔材料对溶菌酶的吸附的等温吸附模型与Freundlich吸附模型接近一致. 优秀的机械稳定性和化学结构稳定性赋予PVA/BTCA多孔材料可重复使用性,这项工作有望为蛋白分离方向提供一种新的分离材料.
A highly carboxylated sponge monolithic adsorbent material (PVA/BTCA porous material) was prepared using SiO
2
nanofibers as a three-dimensional structural rigid support framework and an esterified cross-linking reactant of poly(vinyl alcohol) (PVA)/butane tetracarboxylic acid (BTCA) as a functional organic binder. As a kind of adsorption material
it is proven that PVA/BTCA material has good structural stability under water by underwater cyclic compression test. The highly carboxylated and high porosity of the PVA/BTCA porous material provided the basis for protein adsorption
which could selectively adsorb positively charged proteins. Using lysozyme as the main model protein
the maximum adsorption of PVA/BTCA porous material for lysozyme at pH=7 was 1342.3 mg/g. The isothermal adsorption model of PVA/BTCA porous material for the adsorption of lysozyme is in close agreement with the Freundlich adsorption model. The excellent mechanical stability and chemical structural stability confer reusability to the PVA/BTCA porous material. This work is expected to provide a new separation material for protein separation.
溶菌酶三维材料吸附聚乙烯醇
LysozymeThree-dimensional materialAdsorptionPoly(vinyl alcohol)
Shen Y. X.; Saboe P. O.; Sines I. T.; Erbakan M.; Kumar M. Biomimetic membranes: a review. J. Membr. Sci., 2014, 454, 359-381. doi:10.1016/j.memsci.2013.12.019http://dx.doi.org/10.1016/j.memsci.2013.12.019
Buehler M. J.; Yung Y. C. Deformation and failure of protein materials in physiologically extreme conditions and disease. Nat. Mater., 2009, 8(3), 175-188. doi:10.1038/nmat2387http://dx.doi.org/10.1038/nmat2387
Kapoor S.; Rafiq A.; Sharma S. Protein engineering and its applications in food industry. Crit. Rev. Food Sci. Nutr., 2017, 57(11), 2321-2329. doi:10.1080/10408398.2014.1000481http://dx.doi.org/10.1080/10408398.2014.1000481
Epaud R.; Delestrain C.; Weaver T. E.; Akinbi H. T. Bacterial killing is enhanced by exogenous administration of lysozyme in the lungs. Respir. Med. Res., 2019, 76, 22-27. doi:10.1016/j.resmer.2019.07.005http://dx.doi.org/10.1016/j.resmer.2019.07.005
Song Q.; Xiao Y.; Xiao Z. H.; Liu T.; Li J. C.; Li P.; Han F. Lysozymes in fish. J. Agric. Food Chem., 2021, 69(50), 15039-15051. doi:10.1021/acs.jafc.1c06676http://dx.doi.org/10.1021/acs.jafc.1c06676
Zhou B.; Zhang M.; Fang Z. X.; Liu Y. P. Effects of ultrasound and microwave pretreatments on the ultrafiltration desalination of salted duck egg white protein. Food Bioprod. Process., 2015, 96, 306-313. doi:10.1016/j.fbp.2015.09.004http://dx.doi.org/10.1016/j.fbp.2015.09.004
Ding Z. Y.; Li S. P.; Cao X. J. Separation of lysozyme from salted duck egg white by affinity precipitation using pH-responsive polymer with an L. Sep. Purif. Technol., 2014, 138, 153-160. doi:10.1016/j.seppur.2014.10.021http://dx.doi.org/10.1016/j.seppur.2014.10.021
Diaz-Gomez L.; Concheiro A.; Alvarez-Lorenzo C. Functionalization of titanium implants with phase-transited lysozyme for gentle immobilization of antimicrobial lysozyme. Appl. Surf. Sci., 2018, 452, 32-42. doi:10.1016/j.apsusc.2018.05.024http://dx.doi.org/10.1016/j.apsusc.2018.05.024
Patil S. S.; Rathod V. K. Combined effect of enzyme co-immobilized magnetic nanoparticles (MNPs) and ultrasound for effective extraction and purification of curcuminoids from Curcuma longa. Ind. Crops Prod., 2022, 177, 114385. doi:10.1016/j.indcrop.2021.114385http://dx.doi.org/10.1016/j.indcrop.2021.114385
Seng Y. Y.; Yun C. T.; Abdullah N.; Wong F. W. F. Lysozymes from natural rubber latex (Hevea brasiliensis): assay development and recovery using ammonium sulphate and surfactant precipitations. Ind. Crops Prod., 2022, 177, 114470. doi:10.1016/j.indcrop.2021.114470http://dx.doi.org/10.1016/j.indcrop.2021.114470
Huang Q.; Ma M.; Huang X.; Geng F.; He M. Separation of ovalbumin and lysozyme from chicken egg white using two-stage ultrafiltration technique. Transactions of the Chinese Society of Agricultural Machinery, 2012, 43 (3), 146-151. doi:10.6041/j.issn.1000-1298.2012.03.027http://dx.doi.org/10.6041/j.issn.1000-1298.2012.03.027
Lu Y. M.; Lu W. J.; Wang W.; Guo Q. W.; Yang Y. Z. The optimization of aqueous two-phase extraction of lysozyme from crude hen egg white using response surface methodology. J. Chem. Technol. Biotechnol., 2013, 88(3), 415-421. doi:10.1002/jctb.3868http://dx.doi.org/10.1002/jctb.3868
Belchior D. C. V.; Freire M. G. Simultaneous separation of egg white proteins using aqueous three-phase partitioning systems. J. Mol. Liq., 2021, 336, 116245. doi:10.1016/j.molliq.2021.116245http://dx.doi.org/10.1016/j.molliq.2021.116245
Liu B. L.; Ooi C. W.; Ng I. S.; Show P. L.; Lin K. J.; Chang Y. K. Effective purification of lysozyme from chicken egg white by tris(hydroxymethyl)aminomethane affinity nanofiber membrane. Food Chem., 2020, 327, 127038. doi:10.1016/j.foodchem.2020.127038http://dx.doi.org/10.1016/j.foodchem.2020.127038
Aydoğan C.; Erdoğan İ. Y.; El-Rassi Z. Hydrophobic AEROSIL®R972 fumed silica nanoparticles incorporated monolithic nano-columns for small molecule and protein separation by nano-liquid chromatography. Molecules, 2022, 27(7), 2306. doi:10.3390/molecules27072306http://dx.doi.org/10.3390/molecules27072306
Egas D. A.; Wirth M. J. Fundamentals of protein separations: 50 years of nanotechnology, and growing. Annu. Rev. Anal. Chem., 2008, 1, 833-855. doi:10.1146/annurev.anchem.1.031207.112912http://dx.doi.org/10.1146/annurev.anchem.1.031207.112912
Yu B.; Xu T.; Cong H. L.; Peng Q. H.; Usman M. Preparation of porous poly(styrene-divinylbenzene) microspheres and their modification with diazoresin for mix-mode HPLC separations. Materials, 2017, 10(4), 440. doi:10.3390/ma10040440http://dx.doi.org/10.3390/ma10040440
Liu S.; Mukai Y. Selective adsorption and separation of proteins by ligand-modified nanofiber fabric. Polymers, 2021, 13(14), 2313. doi:10.3390/polym13142313http://dx.doi.org/10.3390/polym13142313
Duan C.; Fu Q. X.; Si Y.; Liu L. F.; Yin X.; Ji F.; Yu J. Y.; Ding B. Electrospun regenerated cellulose nanofiber based metal-chelating affinity membranes for protein adsorption. Compos. Commun., 2018, 10, 168-174. doi:10.1016/j.coco.2018.09.010http://dx.doi.org/10.1016/j.coco.2018.09.010
Li Z. H.; Ding X.; Yu B.; Min Y.; He B.; Shen Y. Q.; Cong H. L. A novel M2Ga2GeO7:N3+(M=Ca, Ba, Sr; N=Cr, Nd, Er) sub-micron phosphor with multiband NIR emissions: preparation, structure, properties, and LEDs. Nanotechnology, 2021, 32(39), 395703.
Fu Q. X.; Si Y.; Liu L. F.; Yu J. Y.; Ding B. Elaborate design of ethylene vinyl alcohol (EVAL) nanofiber-based chromatographic media for highly efficient adsorption and extraction of proteins. J. Colloid Interface Sci., 2019, 555, 11-21. doi:10.1016/j.jcis.2019.07.065http://dx.doi.org/10.1016/j.jcis.2019.07.065
Gai Q. Q.; Qu F.; Zhang T.; Zhang Y. K. Integration of carboxyl modified magnetic particles and aqueous two-phase extraction for selective separation of proteins. Talanta, 2011, 85(1), 304-309. doi:10.1016/j.talanta.2011.03.055http://dx.doi.org/10.1016/j.talanta.2011.03.055
Shen Y.; Wang L. L.; Liu F.; Liu H. Z.; Li D. W.; Liu Q. S.; Deng B. Y. Solvent vapor strengthened polyimide nanofiber-based aerogels with high resilience and controllable porous structure. ACS Appl. Mater. Interfaces, 2020, 12(47), 53104-53114. doi:10.1021/acsami.0c15751http://dx.doi.org/10.1021/acsami.0c15751
Xu T.; Ding Y. C.; Wang Z.; Zhao Y.; Wu W. D.; Fong H.; Zhu Z. T. Three-dimensional and ultralight sponges with tunable conductivity assembled from electrospun nanofibers for a highly sensitive tactile pressure sensor. J. Mater. Chem. C, 2017, 5(39), 10288-10294. doi:10.1039/c7tc03456chttp://dx.doi.org/10.1039/c7tc03456c
Ma X. L.; Wang W. L.; Sun C. G.; Li H.; Sun J.; Liu X. Adsorption performance and kinetic study of hierarchical porous Fe-based MOFs for toluene removal. Sci. Total Environ., 2021, 793, 148622. doi:10.1016/j.scitotenv.2021.148622http://dx.doi.org/10.1016/j.scitotenv.2021.148622
Wang F.; Qin S. B.; Zhu B. T.; Jin P.; Cai J. H.; He Y. P.; Cong H. L.; Feng L. Dual modification of carbon support enables robust anchoring of ruthenium nanoclusters for efficient hydrogen evolution and aromatic nitroreduction. Adv. Mater. Interfaces, 2022, 9(2), 2101564. doi:10.1002/admi.202101564http://dx.doi.org/10.1002/admi.202101564
Alberghina G.; Bianchini R.; Fichera M.; Fisichella S. Dimerization of cibacron blue F3GA and other dyes: influence of salts and temperature. Dyes Pigm., 2000, 46(3), 129-137. doi:10.1016/s0143-7208(00)00045-0http://dx.doi.org/10.1016/s0143-7208(00)00045-0
Gong X. L.; Lu H. Q.; Li K.; Li W. Effective adsorption of crystal violet dye on sugarcane bagasse-bentonite/sodium alginate composite aerogel: Characterisation, experiments, and advanced modelling. Sep. Purif. Technol., 2022, 286, 120478. doi:10.1016/j.seppur.2022.120478http://dx.doi.org/10.1016/j.seppur.2022.120478
Tian P.; Han X. Y.; Ning G. L.; Fang H. X.; Ye J. W.; Gong W. T.; Lin Y. A. Synthesis of porous hierarchical MgO and its superb adsorption properties. ACS Appl. Mater. Interfaces, 2013, 5(23), 12411-12418. doi:10.1021/am403352yhttp://dx.doi.org/10.1021/am403352y
Che A. F.; Huang X. J.; Xu Z. K. Polyacrylonitrile-based nanofibrous membrane with glycosylated surface for lectin affinity adsorption. J. Membr. Sci., 2011, 366(1-2), 272-277. doi:10.1016/j.memsci.2010.10.012http://dx.doi.org/10.1016/j.memsci.2010.10.012
Zhao Y. M.; Gai L. X.; Liu H.; An Q. D.; Xiao Z. Y.; Zhai S. R. Network interior and surface engineering of alginate-based beads using sorption affinity component for enhanced phosphate capture. Int. J. Biol. Macromol., 2020, 162, 301-309. doi:10.1016/j.ijbiomac.2020.06.159http://dx.doi.org/10.1016/j.ijbiomac.2020.06.159
Jain M.; Khan S. A.; Sahoo A.; Dubey P.; Pant K. K.; Ziora Z. M.; Blaskovich M. A. T. Statistical evaluation of cow-dung derived activated biochar for phenol adsorption: Adsorption isotherms, kinetics, and thermodynamic studies. Bioresour. Technol., 2022, 352, 127030. doi:10.1016/j.biortech.2022.127030http://dx.doi.org/10.1016/j.biortech.2022.127030
Zhang Y.; Xing L. G.; Chen X. W.; Wang J. H. Nano copper oxide-incorporated mesoporous carbon composite as multimode adsorbent for selective isolation of hemoglobin. ACS Appl. Mater. Interfaces, 2015, 7(9), 5116-5123. doi:10.1021/am508836mhttp://dx.doi.org/10.1021/am508836m
0
Views
31
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution