浏览全部资源
扫码关注微信
1.华南理工大学发光材料与器件国家重点实验室 广东省分子聚集发光重点实验室 广州 510640
2.香港中文大学(深圳)理工学院 深圳 518172
3.聚集诱导发光高等研究院 广州 510530
Rong-rong Hu, E-mail: msrrhu@scut.edu.cn
Published:20 October 2023,
Published Online:01 September 2023,
Received:27 May 2023,
Accepted:08 July 2023
扫 描 看 全 文
于冰,霍金磊,胡蓉蓉等.单质硫、异腈和硫醇的多组分串联聚合合成聚二硫代氨基甲酸酯[J].高分子学报,2023,54(10):1509-1520.
Yu Bing,Huo Jin-lei,Hu Rong-rong,et al.Multicomponent Tandem Polymerizations of Sulfur, Diisocyanides and Dithiols toward Polydithiocarbamates[J].ACTA POLYMERICA SINICA,2023,54(10):1509-1520.
于冰,霍金磊,胡蓉蓉等.单质硫、异腈和硫醇的多组分串联聚合合成聚二硫代氨基甲酸酯[J].高分子学报,2023,54(10):1509-1520. DOI: 10.11777/j.issn1000-3304.2023.23117.
Yu Bing,Huo Jin-lei,Hu Rong-rong,et al.Multicomponent Tandem Polymerizations of Sulfur, Diisocyanides and Dithiols toward Polydithiocarbamates[J].ACTA POLYMERICA SINICA,2023,54(10):1509-1520. DOI: 10.11777/j.issn1000-3304.2023.23117.
聚二硫代氨基甲酸酯具有优异的力学性质和动态可逆性,是一类富有前景的功能高分子材料,然而其合成方法较为有限,限制了其结构和功能的拓展.在本文中,我们针对单质硫、异腈和硫醇的反应中存在副反应、效率低等问题,通过设计分步投料的方式、有机碱的种类和反应温度,提高了反应效率和选择性,并成功发展为有机碱催化的单质硫、异腈和硫醇的多组分串联聚合,以
N
N
-二异丙基乙胺为碱,在二甲亚砜溶剂中分步反应,得到数均分子量可达1.77×10
4
g/mol的聚二硫代氨基甲酸酯.该聚合条件温和、操作便捷,可适用于苄基异腈和芳香异腈单体,用于合成结构多样的聚二硫代氨基甲酸酯.这类聚合物具有较好的热稳定性,并可在硫醇存在下高效降解为低聚物.该多组分串联聚合为聚二硫代氨基甲酸酯材料提供了温和便捷的合成方法,有望促进这类新型可降解高分子材料的发展.
Polydithiocarbamates are a group of promising functional polymer materials with unique mechanical property and dynamic reversible property
however
the exploration of structures and functionalities of these polymers are limited by the synthetic approaches. In this work
considering the problems regarding the side reactions and low efficiency in the reaction of elemental sulfur
isocyanide
and thiol
one-pot two-step tandem strategy
organic bases
and reaction temperature were carefully designed to improve the efficiency and selectivity of the reaction. The organic base-catalyzed multicomponent tandem polymerizations of elemental sulfur
diisocyanides and dithiols were developed
with
N
N
-diisopropylethylamine as the base in DMSO
affording polydithiocarbamates with
M
n
s of up to 1.77×10
4
g/mol. The polymerization was mild and convenient
which could be applied to both aliphatic and aromatic isocyanides
to synthesize polydithiocarbamates with different structures. These polymers possessed good thermal stability
and could be degraded to oligomers in the presence of thiol. The multicomponent tandem polymerizations could provide a mild and convenient synthetic approach for polydithiocarbamates
which may accelerate the development of these sulfur-containing degradable polymer materials.
单质硫多组分串联聚合聚二硫代氨基甲酸酯可降解高分子
Elemental sulfurMulticomponent tandem polymerizationPolydithiocarbamatesDegradable polymers
Cui C. H.; An L.; Zhang Z. L.; Ji M. K.; Chen K.; Yang Y. X.; Su Q.; Wang F.; Cheng Y. L.; Zhang Y. F. Reconfigurable 4D printing of reprocessable and mechanically strong polythiourethane covalent adaptable networks. Adv. Funct. Mater., 2022, 32(29), 2203720. doi:10.1002/adfm.202203720http://dx.doi.org/10.1002/adfm.202203720
Yanagisawa Y.; Nan Y. L.; Okuro K.; Aida T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science, 2018, 359(6371), 72-76. doi:10.1126/science.aam7588http://dx.doi.org/10.1126/science.aam7588
Cao W. X.; Dai F. Y.; Hu R. R.; Tang B. Z. Economic sulfur conversion to functional polythioamides through catalyst-free multicomponent polymerizations of sulfur, acids, and amines. J. Am. Chem. Soc., 2020, 142(2), 978-986. doi:10.1021/jacs.9b11066http://dx.doi.org/10.1021/jacs.9b11066
Anderson L. E.; Kleine T. S.; Zhang Y. Y.; Phan D. D.; Namnabat S.; LaVilla E. A.; Konopka K. M.; Ruiz Diaz L.; Manchester M. S.; Schwiegerling J.; Glass R. S.; MacKay M. E.; Char K.; Norwood R. A.; Pyun J. Chalcogenide hybrid inorganic/organic polymers: Ultrahigh refractive index polymers for infrared imaging. ACS Macro Lett., 2017, 6(5), 500-504. doi:10.1021/acsmacrolett.7b00225http://dx.doi.org/10.1021/acsmacrolett.7b00225
Yang C. Y.; Zhang S. Q.; Hou J. H. Low-cost and efficient organic solar cells based on polythiophene- and poly(thiophene vinylene)-related donors. Aggregate, 2022, 3(3), e111. doi:10.1002/agt2.111http://dx.doi.org/10.1002/agt2.111
Zhou H.; Zhang F.; Wang R.; Lai W. M.; Xie S.; Ren W. M.; Lu X. B. Facile access to functionalized poly(thioether)s via anionic ring-opening decarboxylative polymerization of COS-sourced α-alkylidene cyclic thiocarbonates. Macromolecules, 2021, 54(22), 10395-10404. doi:10.1021/acs.macromol.1c01475http://dx.doi.org/10.1021/acs.macromol.1c01475
Wang Y.; Xia Y. N.; Hua Z. J.; Zhang C. J.; Zhang X. H. Chemoselective ring-opening copolymerization of five-membered cyclic carbonates and carbonyl sulfide toward poly(thioether)s. Polym. Chem., 2022, 13(37), 5397-5403. doi:10.1039/d2py01014chttp://dx.doi.org/10.1039/d2py01014c
Dizman C.; Altinkok C.; Tasdelen M. A. Synthesis of self-curable polysulfone containing pendant benzoxazine units via CuAAC click chemistry. Des. Monomers Polym., 2017, 20(1), 293-299. doi:10.1080/15685551.2016.1257379http://dx.doi.org/10.1080/15685551.2016.1257379
Guo J.; Zhang S. Q.; Tao Y. Q.; Fan B. E.; Tang W. Glutathione-triggered biodegradable poly(disulfide)s: ring-opening copolymerization and potent antibacterial activity. Polym. Chem., 2022, 13(48), 6637-6649. doi:10.1039/d2py01084dhttp://dx.doi.org/10.1039/d2py01084d
Fährmann J.; Hilt G. Electrochemical synthesis of organic polysulfides from disulfides by sulfur insertion from S8 and an unexpected solvent effect on the product distribution. Chem. A Eur. J., 2021, 27(43), 11141-11149. doi:10.1002/chem.202101023http://dx.doi.org/10.1002/chem.202101023
Park K. W.; Zujovic Z.; Leitao E. M. Synthesis and characterization of disiloxane cross-linked polysulfides. Macromolecules, 2022, 55(6), 2280-2289. doi:10.1021/acs.macromol.1c02558http://dx.doi.org/10.1021/acs.macromol.1c02558
黄月洲, 胡晨阳, 王天昶, 庞烜, 陈学思. 硫代羧基环内酸酐与丙交酯的可切换共聚. 高分子学报, 2023, 54(4), 467-475. doi:10.11777/j.issn1000-3304.2022.22355http://dx.doi.org/10.11777/j.issn1000-3304.2022.22355
朱忆诺, 陶友华. 基于氨基酸基交硫酯单体的闭环回收高分子. 高分子学报, 2022, 53(9), 1023-1031. doi:10.11777/j.issn1000-3304.2022.22102http://dx.doi.org/10.11777/j.issn1000-3304.2022.22102
Zhang C. J.; Zhang X. H. Recent progress on COS-derived polymers. Chinese J. Polym. Sci., 2019, 37(10), 951-958. doi:10.1007/s10118-019-2288-yhttp://dx.doi.org/10.1007/s10118-019-2288-y
Zhang C. J.; Zhang X.; Zhang X. H. Dual cooperative organocatalysts for one-pot synthesis of polyester-polythiocarbonate block copolymers from multiple monomers. Sci. China Chem., 2020, 63(12), 1807-1814. doi:10.1007/s11426-020-9816-4http://dx.doi.org/10.1007/s11426-020-9816-4
Sun Z. Y.; Huang H. H.; Li L.; Liu L. X.; Chen Y. M. Polythioamides of high refractive index by direct polymerization of aliphatic primary diamines in the presence of elemental sulfur. Macromolecules, 2017, 50(21), 8505-8511. doi:10.1021/acs.macromol.7b01788http://dx.doi.org/10.1021/acs.macromol.7b01788
Wu S.; Luo M.; Darensbourg D. J.; Zuo X. B. Catalyst-free construction of versatile and functional CS2polythioureas-based: characteristics from self-healing to heavy metal absorption. Macromolecules, 2019, 52(22), 8596-8603. doi:10.1021/acs.macromol.9b01811http://dx.doi.org/10.1021/acs.macromol.9b01811
Fan C. J.; Wen Z. B.; Xu Z. Y.; Xiao Y.; Wu D.; Yang K. K.; Wang Y. Z. Adaptable strategy to fabricate self-healable and reprocessable poly(thiourethane-urethane) elastomers via reversible thiol—isocyanate click chemistry. Macromolecules, 2020, 53(11), 4284-4293. doi:10.1021/acs.macromol.0c00239http://dx.doi.org/10.1021/acs.macromol.0c00239
Yu X. Y.; Hong H. Y.; Li X.; Zhao J.; Qian H.; Li S. Z.; Lin Z. Y. The effect of Polysulfone (PSU) grafting copolymers on improving the processability of its composites. J. Polym. Res., 2023, 30(2), 1-13. doi:10.1007/s10965-023-03459-2http://dx.doi.org/10.1007/s10965-023-03459-2
Wen Z. B.; Han X.; Fairbanks B. D.; Yang K. K.; Bowman C. N. Development of thiourethanes as robust, reprocessable networks. Polymer, 2020, 202, 122715. doi:10.1016/j.polymer.2020.122715http://dx.doi.org/10.1016/j.polymer.2020.122715
Petcher S.; Zhang B. W.; Hasell T. Mesoporous knitted inverse vulcanised polymers. Chem. Commun., 2021, 57(41), 5059-5062.
Li B. Q.; Peng H. J.; Chen X. A.; Zhang S. Y.; Xie J.; Zhao C. X.; Zhang Q. A. Polysulfide electrocatalysis on framework porphyrin in high-capacity and high-stable lithium-sulfur batteries. CCS Chem., 2019, 128-137. doi:10.31635/ccschem.019.20180016http://dx.doi.org/10.31635/ccschem.019.20180016
Li Y. M.; Zhang Z. P.; Rong M. Z.; Zhang M. Q. Tailored modular assembly derived self-healing polythioureas with largely tunable properties covering plastics, elastomers and fibers. Nat. Commun., 2022, 13, 2633. doi:10.1038/s41467-022-30364-xhttp://dx.doi.org/10.1038/s41467-022-30364-x
Orrillo A. G.; Furlan R. L. E. Sulfur in dynamic covalent chemistry. Angew. Chem. Int. Ed., 2022, 61(26), e202201168. doi:10.1002/anie.202201168http://dx.doi.org/10.1002/anie.202201168
Ge W. M.; Zhao B. J.; Liu W. M.; Nie K. M.; Zheng S. X. Polythiourethanes crosslinked with dynamic disulfide bonds: synthesis via nonisocyanate approach, thermomechanical and reprocessing properties. Macromol. Rapid Commun., 2021, 42(7), 2000718. doi:10.1002/marc.202000718http://dx.doi.org/10.1002/marc.202000718
Gomez L.; Gellibert F.; Wagner A.; Mioskowski C. An efficient procedure for traceless solid-phase synthesis of N,N΄-substituted thioureas by thermolytic cleavage of resin-bound dithiocarbamates. J. Comb. Chem., 2000, 2(1), 75-79. doi:10.1021/cc990058dhttp://dx.doi.org/10.1021/cc990058d
Yoshida Y.; Ohnaka K.; Endo T. Reprocessable aliphatic polydithiourethanes based on the reversible addition reaction of diisothiocyanates and dithiols. Macromolecules, 2019, 52(16), 6080-6087. doi:10.1021/acs.macromol.9b00350http://dx.doi.org/10.1021/acs.macromol.9b00350
Yoshida Y.; Endo T. Synthesis of polydithiourethanes and their thermal, optical, and mechanical properties originated from monomers structure. J. Polym. Sci. Poly. Chem., 2018, 56(19), 2255-2262. doi:10.1002/pola.29198http://dx.doi.org/10.1002/pola.29198
Nagai D.; Imazeki T.; Morinaga H.; Nakabayashi H. Synthesis of a rare-metal adsorbing polymer by three-component polyaddition of diamines, carbon disulfide, and diacrylates in an aqueous/organic biphasic medium. J. Polym. Sci. Poly. Chem., 2010, 48(24), 5968-5973. doi:10.1002/pola.24414http://dx.doi.org/10.1002/pola.24414
Nagai D.; Imazeki T.; Morinaga H.; Oku H.; Kasuya K. I. Three-component polyaddition of diamines, carbon disulfide, and diacrylates in water. J. Polym. Sci. Poly. Chem., 2010, 48(4), 845-851. doi:10.1002/pola.23833http://dx.doi.org/10.1002/pola.23833
Halimehjani A. Z.; Mohtasham R.; Shockravi A.; Martens J. Multicomponent synthesis of dithiocarbamates starting from vinyl sulfones/sulfoxides and their use in polymerization reactions. RSC Adv., 2016, 6(79), 75223-75226. doi:10.1039/c6ra15616ahttp://dx.doi.org/10.1039/c6ra15616a
Li W. Z.; Wu X. Y.; Zhao Z. J.; Qin A. J.; Hu R. R.; Tang B. Z. Catalyst-free, atom-economic, multicomponent polymerizations of aromatic diynes, elemental sulfur, and aliphatic diamines toward luminescent polythioamides. Macromolecules, 2015, 48(21), 7747-7754. doi:10.1021/acs.macromol.5b02193http://dx.doi.org/10.1021/acs.macromol.5b02193
Tian T.; Hu R. R.; Tang B. Z. Room temperature one-step conversion from elemental sulfur to functional polythioureas through catalyst-free multicomponent polymerizations. J. Am. Chem. Soc., 2018, 140(19), 6156-6163. doi:10.1021/jacs.8b02886http://dx.doi.org/10.1021/jacs.8b02886
Zhang L. H.; Hu Y.; Hu R. R.; Tang B. Z. Room temperature synthesis of polythioamides from multicomponent polymerization of sulfur, pyridine-activated alkyne, and amines. Chem. Commun., 2022, 58(12), 1994-1997. doi:10.1039/d1cc06448ghttp://dx.doi.org/10.1039/d1cc06448g
Zhang J. E.; Zang Q. G.; Yang F. L.; Zhang H. K.; Sun J. Z.; Tang B. Z. Sulfur conversion to multifunctional poly(O-thiocarbamate)s through multicomponent polymerizations of sulfur, diols, and diisocyanides. J. Am. Chem. Soc., 2021, 143(10), 3944-3950. doi:10.1021/jacs.1c00243http://dx.doi.org/10.1021/jacs.1c00243
Dénès F.; Pichowicz M.; Povie G.; Renaud P. Thiyl radicals in organic synthesis. Chem. Rev., 2014, 114(5), 2587-2693. doi:10.1021/cr400441mhttp://dx.doi.org/10.1021/cr400441m
Stoffel J. T.; Riordan K. T.; Tsui E. Y. Accelerated reduction and solubilization of elemental sulfur by 1,2-aminothiols. Chem. Commun., 2021, 57(93), 12488-12491. doi:10.1039/d1cc05242jhttp://dx.doi.org/10.1039/d1cc05242j
Bordoloi B. K.; Pearce E. M. Oligomeric alkenyl polysulfide: synthesis and characterization by NMR analysis. J. Polym. Sci., 1978, 16(12), 3293-3300. doi:10.1002/pol.1978.170161224http://dx.doi.org/10.1002/pol.1978.170161224
Bordoloi B. K.; Pearce E. M. Kinetics of the base-catalyzed reactions of cyclo-octameric and catenapolymeric sulfur with dithiol. J. Appl. Polym. Sci., 1979, 23(9), 2757-2761. doi:10.1002/app.1979.070230920http://dx.doi.org/10.1002/app.1979.070230920
Chao J. Y.; Yue T. J.; Ren B. H.; Gu G. G.; Lu X. B.; Ren W. M. Controlled disassembly of elemental sulfur: An approach to the precise synthesis of polydisulfides. Angew. Chem. Int. Ed., 2022, 61(16), e202115950. doi:10.1002/anie.202115950http://dx.doi.org/10.1002/anie.202115950
Németh A. G.; Keserű G. M.; Ábrányi-Balogh P. A novel three-component reaction between isocyanides, alcohols or thiols and elemental sulfur: A mild, catalyst-free approach towards O-thiocarbamates and dithiocarbamates. Beilstein J. Org. Chem., 2019, 15, 1523-1533. doi:10.3762/bjoc.15.155http://dx.doi.org/10.3762/bjoc.15.155
Nickisch R.; Conen P.; Gabrielsen S. M.; Meier M. A. R. A more sustainable isothiocyanate synthesis by amine catalyzed sulfurization of isocyanides with elemental sulfur. RSC Adv., 2021, 11(5), 3134-3142. doi:10.1039/d0ra10436ahttp://dx.doi.org/10.1039/d0ra10436a
Nguyen T. B.; Retailleau P. DIPEA-promoted reaction of 2-nitrochalcones with elemental sulfur: an unusual approach to 2-benzoylbenzothiophenes. Org. Lett., 2017, 19(18), 4858-4860. doi:10.1021/acs.orglett.7b02321http://dx.doi.org/10.1021/acs.orglett.7b02321
Nguyen T. B.; Retailleau P. Cooperative activating effect of tertiary amine/DMSO on elemental sulfur: direct access to thioaurones from 2'-nitrochalcones under mild conditions. Org. Lett., 2018, 20(1), 186-189. doi:10.1021/acs.orglett.7b03547http://dx.doi.org/10.1021/acs.orglett.7b03547
Jung T.; Do H. J.; Son J.; Song J. H.; Cha W.; Kim Y. J.; Lee K. K.; Kwak K. Hindered CN bond rotation in triazinyl dithiocarbamates. J. Mol. Struct., 2018, 1152, 215-222. doi:10.1016/j.molstruc.2017.09.063http://dx.doi.org/10.1016/j.molstruc.2017.09.063
0
Views
44
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution