浏览全部资源
扫码关注微信
1.四川师范大学化学与材料科学学院 成都 610066
2.清华大学化学系 北京 100084
3.北京科技大学材料科学与工程学院 北京 100083
Yue-feng Bai, E-mail: baiyf@sicnu.edu.cn
Yen Wei, E-mail: weiyen@tsinghua.edu.cn
Published:20 October 2023,
Published Online:25 August 2023,
Received:03 May 2023,
Accepted:21 June 2023
扫 描 看 全 文
王艳,李若馨,吴志成等.氟代苯基聚降冰片烯单阴离子交换膜的制备及损伤可视化检测[J].高分子学报,2023,54(10):1599-1612.
Wang Yan,Li Ruo-xin,Wu Zhi-cheng,et al.Design, Preparation and Visual Detection of Fluorophenyl Polynorbornene Anion Exchange Membrane with Single Quaternary Ammonium Salt[J].ACTA POLYMERICA SINICA,2023,54(10):1599-1612.
王艳,李若馨,吴志成等.氟代苯基聚降冰片烯单阴离子交换膜的制备及损伤可视化检测[J].高分子学报,2023,54(10):1599-1612. DOI: 10.11777/j.issn1000-3304.2023.23119.
Wang Yan,Li Ruo-xin,Wu Zhi-cheng,et al.Design, Preparation and Visual Detection of Fluorophenyl Polynorbornene Anion Exchange Membrane with Single Quaternary Ammonium Salt[J].ACTA POLYMERICA SINICA,2023,54(10):1599-1612. DOI: 10.11777/j.issn1000-3304.2023.23119.
具有高的离子电导率和碱性稳定性的碱性阴离子交换膜(AEMs)是制备碱性燃料电池的关键. 通过合理的分子设计,选用全烷烃基聚降冰片烯嵌段共聚物作为AEMs的主链,可有效避免AEMs在强碱条件下的降解. 同时在侧链中引入亲水性含氟苯基季铵盐作为离子导电基元,疏水性三乙基硅基团作为非导电基元,利用二者之间的亲疏水作用,在薄膜中形成可供OH
-
迁移的离子通道,有助于提高AEMs的电导率. 通过调节含氟苯基季铵盐中氟原子的数目,可以调节离子通道的大小,从而实现对薄膜电导率的调控. 另外,为了实现AEMs的损伤可视化监测,将具有聚集诱导发光作用的四苯乙烯基二降冰片烯酰亚胺作为交联单体引入聚合物中,通过烯烃的复分解反应,开环聚合制备得到单离子AEMs. 聚合物表现出优异的热稳定性(5%热失重温度
T
d
>
250 ℃),力学性能(
σ
b
= 36.56 MPa
δ
=16.92%) 和耐碱性能(在6 mol/L NaOH溶液中浸泡7天后,电导率仅下降3.3%). 通过扫描电子显微镜可观测到微相分离形成的离子通道,与已报道的单离子AEMs相比,表现出较高的离子电导率(80 ℃,24 mS/cm). 在365 nm光照下,薄膜发出均匀的绿色荧光,损伤处则无荧光,实现了AEMs的可视化检测.
Alkaline anion exchange membrane (AEMs) is an important component in the preparation of alkaline fuel cells
which should have high ionic conductivity and alkaline stability. In this work
we present a rationally designed block copolymer of polynorbornene as the backbone of AEMs
which maintains excellent stability in strong alkaline media. Furthermore
ionic conducting fluorophenyl quaternary ammonium salt and non-conducting triethyl silicon group are introduced in side chains to attain tunable polymer structures. Due to the hydrophilic and hydrophobic interactions
channels are formed in the polymer membrane for the transfer of hydroxide. In addition
in order to achieve nondestructive detection of AEMs
tetraphenyl ethylene with aggregation-induced luminescence
for the first time
is introduced as crosslinking monomer to prepare block copolymers
via
ring-opening metathesis polymerization with Grubbs II as catalyst. The copolymers exhibit excellent thermostability
mechanical properties and alkali resistance. The maximum stress and elongation at break of PNB-NOHPhF1-3Si-TPE are
σ
b
= 36.56 MPa and
δ
=16.92%
respectively
and the 5% weight lost temperature is over 250 ℃. Compared with the reported AEMs with single quaternary ammonium salt
the block copolymers PNB-NOHPhF1-3Si-TPE show better alkali resistance and higher conductivity of 24 mS/cm at 80 ℃. The ion channels formed by microphase separation can be observed with scanning electron microscopy (SEM) by scanning the polymer cross section. Under 365 nm UV-light
the film emits uniform green fluorescence. Because of the lack of fluorescence at the damage sites
the integrity of film is non-destructively visualized.
碱性阴离子交换膜聚降冰片烯开环易位聚合微相分离聚集诱导发光
Alkaline anion exchange membranePolynorborneneRing-opening metathesis polymerizationMicrophase separationAggregation-induced emission
陈荣, 李昂, 房世超, 毕慧平, 胡朝霞, 陈守文. 自交联型季铵化聚醚砜阴离子交换膜的制备与性能. 高分子学报, 2016, (4): 436-442. doi:10.11777/j.issn1000-3304.2016.15225http://dx.doi.org/10.11777/j.issn1000-3304.2016.15225
You W.; Noonan K. J. T.; Coates G. W. Alkaline-stable anion exchange membranes: a review of synthetic approaches. Prog. Polym. Sci., 2020, 100, 101177. doi:10.1016/j.progpolymsci.2019.101177http://dx.doi.org/10.1016/j.progpolymsci.2019.101177
Prykhodko Y.; Fatyeyeva K.; Hespel L.; Marais S. Progress in hybrid composite Nafion®-based membranes for proton exchange fuel cell application. Chem. Eng. J., 2021, 409, 127329. doi:10.1016/j.cej.2020.127329http://dx.doi.org/10.1016/j.cej.2020.127329
Zhu L. Y.; Li Y. C.; Liu J.; He J.; Wang L. Y.; Lei J. D. Recent developments in high-performance Nafion membranes for hydrogen fuel cells applications. Petrol. Sci., 2022, 19(3), 1371-1381. doi:10.1016/j.petsci.2021.11.004http://dx.doi.org/10.1016/j.petsci.2021.11.004
Koók L.; Žitka J.; Bakonyi P.; Takács P.; Pavlovec L.; Otmar M.; Kurdi R.; Bélafi-Bakó K.; Nemestóthy N. Electrochemical and microbiological insights into the use of 1,4-diazabicyclo[2.2.2]octane-functionalized anion exchange membrane in microbial fuel cell: a benchmarking study with Nafion. Sep. Purif. Technol., 2020, 237, 116478. doi:10.1016/j.seppur.2019.116478http://dx.doi.org/10.1016/j.seppur.2019.116478
Qiu Y.; Xie X. H.; Li W. Z.; Shao Y. Y. Electrocatalysts development for hydrogen oxidation reaction in alkaline media: from mechanism understanding to materials design. Chinese J. Catal., 2021, 42(12), 2094-2104. doi:10.1016/s1872-2067(21)64088-3http://dx.doi.org/10.1016/s1872-2067(21)64088-3
Chen N. J.; Lee Y. M. Anion-conducting polyelectrolytes for energy devices. Trends Chem., 2022, 4(3), 236-249. doi:10.1016/j.trechm.2021.12.009http://dx.doi.org/10.1016/j.trechm.2021.12.009
Song W. J.; Liang X.; Zhang Y.; Zhu Y. R.; Zhang F.; Bai Y. X.; Li M.; Zhang H. Q.; Wei C. P.; Liu X.; Wu L.; Ge X. L.; Xu T. W. Hydrogen bonding assisted OH- transport under low humidity for rapid start-up in AEMFCs. J. Membr. Sci., 2022, 647, 120303. doi:10.1016/j.memsci.2022.120303http://dx.doi.org/10.1016/j.memsci.2022.120303
Zhang B. W.; Hua Y. N.; Gao Z. Strategies to optimize water management in anion exchange membrane fuel cells. J. Power Sources, 2022, 525, 231141. doi:10.1016/j.jpowsour.2022.231141http://dx.doi.org/10.1016/j.jpowsour.2022.231141
Ferriday T. B.; Middleton P. H. Alkaline fuel cell technology ‒ a review. Int. J. Hydrog. Energy, 2021, 46(35), 18489-18510. doi:10.1016/j.ijhydene.2021.02.203http://dx.doi.org/10.1016/j.ijhydene.2021.02.203
Jeon J. Y.; Park S.; Han J.; Maurya S.; Mohanty A. D.; Tian D.; Saikia N.; Hickner M. A.; Ryu C. Y.; Tuckerman M. E.; Paddison S. J.; Kim Y. S.; Bae C. Synthesis of aromatic anion exchange membranes by friedel-crafts bromoalkylation and cross-linking of polystyrene block copolymers. Macromolecules, 2019, 52(5), 2139-2147. doi:10.1021/acs.macromol.8b02355http://dx.doi.org/10.1021/acs.macromol.8b02355
Lin C. X.; Wang J. X.; Shen G. H.; Duan J. F.; Xie D.; Cheng F. L.; Zhang Y.; Zhang S. G. Construction of crosslinked polybenz imidazole-based anion exchange membranes with ether-bond-free backbone. J. Membr. Sci., 2019, 590, 117303. doi:10.1016/j.memsci.2019.117303http://dx.doi.org/10.1016/j.memsci.2019.117303
Yang Z. J.; Ran J.; Wu B.; Wu L.; Xu T. W. Stability challenge in anion exchange membrane for fuel cells. Curr. Opin. Chem. Eng., 2016, 12, 22-30. doi:10.1016/j.coche.2016.01.009http://dx.doi.org/10.1016/j.coche.2016.01.009
Xu Y. J.; Zhao C. H.; Huang S. M.; Gan Y. L.; Xiong L.; Zhou J. P.; Liang H. B. Bis-pyridinium crosslinked poly(ether ether ketone) anion exchange membranes with enhancement of hydroxide conductivity and alkaline stability. Int. J. Hydrog. Energy, 2022, 47(9), 6097-6110. doi:10.1016/j.ijhydene.2021.11.209http://dx.doi.org/10.1016/j.ijhydene.2021.11.209
黄雪红, 宋勋, 谢文梅, 丁富传, 凌启淡. ATRP法制备侧链型聚醚醚酮阴离子交换膜. 高分子学报, 2014, (9), 1212-1218. doi:10.11777/j.issn1000-3304.2014.13470http://dx.doi.org/10.11777/j.issn1000-3304.2014.13470
Yuan Y. F.; Tong C. Y.; Lü C. L. Mussel-inspired functionalized LDH as covalent crosslinkers for constructing micro-crosslinking fluorenyl-containing polysulfone-based composite anion exchange membranes with enhanced properties. Appl. Clay Sci., 2020, 199, 105878. doi:10.1016/j.clay.2020.105878http://dx.doi.org/10.1016/j.clay.2020.105878
亢婷婷, 潘雪婷, 高琪, 徐蕴致, 胡朝霞, 陈守文. 复合型季铵化聚醚砜碱性聚合物电解质膜的制备及性能. 高分子学报, 2017, (6): 974-981. doi:10.11777/j.issn1000-3304.2017.16312http://dx.doi.org/10.11777/j.issn1000-3304.2017.16312
Changkhamchom S.; Kunanupatham P.; Phasuksom K.; Sirivat A. Anion exchange membranes composed of quaternized polybenzimidazole and quaternized graphene oxide for glucose fuel cell. Int. J. Hydrog. Energy, 2021, 46(7), 5642-5652. doi:10.1016/j.ijhydene.2020.11.043http://dx.doi.org/10.1016/j.ijhydene.2020.11.043
Tang W. Q.; Yang Y. F.; Liu X. L.; Dong J. H.; Li H. H.; Yang J. S. Long side-chain quaternary ammonium group functionalized polybenzimidazole based anion exchange membranes and their applications. Electrochim. Acta, 2021, 391, 138919. doi:10.1016/j.electacta.2021.138919http://dx.doi.org/10.1016/j.electacta.2021.138919
Chen Y. Y.; Xiong P.; Xiao S. S.; Zhu Y. Z.; Peng S. S.; He G. H. Ion conductive mechanisms and redox flow battery applications of polybenzimidazole-based membranes. Energy Storage Mater., 2022, 45, 595-617. doi:10.1016/j.ensm.2021.12.012http://dx.doi.org/10.1016/j.ensm.2021.12.012
Dong J. H.; Yu N.; Che X. F.; Liu R. H.; Aili D.; Yang J. S. Cationic ether-free poly(bis-alkylimidazolium) ionene blend polybenzimidazole as anion exchange membranes. Polym. Chem., 2020, 11(37), 6037-6046. doi:10.1039/d0py00932fhttp://dx.doi.org/10.1039/d0py00932f
Guo M. L.; Ban T.; Wang Y. J.; Wang Y. N.; Zhang Y. Y.; Zhang J. S.; Zhu X. L. Exploring highly soluble ether-free polybenzimidazole as anion exchange membranes with long term durability. J. Membr. Sci., 2022, 647, 120299. doi:10.1016/j.memsci.2022.120299http://dx.doi.org/10.1016/j.memsci.2022.120299
Hu X.; Huang Y. D.; Liu L.; Ju Q.; Zhou X. X.; Qiao X. Q.; Zheng Z. F.; Li N. W. Piperidinium functionalized aryl ether-free polyaromatics as anion exchange membrane for water electrolysers: performance and durability. J. Membr. Sci., 2021, 621, 118964. doi:10.1016/j.memsci.2020.118964http://dx.doi.org/10.1016/j.memsci.2020.118964
Lee W. H.; Kim Y. S.; Bae C. Robust hydroxide ion conducting poly(biphenyl alkylene)s for alkaline fuel cell membranes. ACS Macro Lett., 2015, 4(8), 814-818. doi:10.1021/acsmacrolett.5b00375http://dx.doi.org/10.1021/acsmacrolett.5b00375
Li D. G.; Matanovic I.; Lee A. S.; Park E. J.; Fujimoto C.; Chung H. T.; Kim Y. S. Phenyl oxidation impacts the durability of alkaline membrane water electrolyzer. ACS Appl. Mater. Interfaces, 2019, 11(10), 9696-9701. doi:10.1021/acsami.9b00711http://dx.doi.org/10.1021/acsami.9b00711
Matanovic I.; Maurya S.; Park E. J.; Jeon J. Y.; Bae C.; Kim Y. S. Adsorption of polyaromatic backbone impacts the performance of anion exchange membrane fuel cells. Chem. Mater., 2019, 31(11), 4195-4204. doi:10.1021/acs.chemmater.9b01092http://dx.doi.org/10.1021/acs.chemmater.9b01092
Peng H. Q.; Li Q. H.; Hu M. X.; Xiao L.; Lu J. T.; Zhuang L. Alkaline polymer electrolyte fuel cells stably working at 80 ℃. J. Power Sources, 2018, 390, 165-167. doi:10.1016/j.jpowsour.2018.04.047http://dx.doi.org/10.1016/j.jpowsour.2018.04.047
Wang J. H.; Zhao Y.; Setzler B. P.; Rojas-Carbonell S.; Yehuda B. C.; Amel A.; Page M.; Wang L.; Hu K. D.; Shi L.; Gottesfeld S.; Xu B. J.; Yan Y. S. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nat. Energy, 2019, 4(5), 392-398. doi:10.1038/s41560-019-0372-8http://dx.doi.org/10.1038/s41560-019-0372-8
Ren R.; Zhang S. M.; Miller H. A.; Vizza F.; Varcoe J. R.; He Q. G. Facile preparation of novel cardo poly(oxindolebiphenylylene) with pendent quaternary ammonium by superacid-catalysed polyhydroxyalkylation reaction for anion exchange membranes. J. Membr. Sci., 2019, 591, 117320. doi:10.1016/j.memsci.2019.117320http://dx.doi.org/10.1016/j.memsci.2019.117320
Zhang S.; Zhu X. L.; Jin C. H. Development of a high-performance anion exchange membrane using poly(isatin biphenylene) with flexible heterocyclic quaternary ammonium cations for alkaline fuel cells. J. Mater. Chem. A, 2019, 7(12), 6883-6893. doi:10.1039/c8ta11291fhttp://dx.doi.org/10.1039/c8ta11291f
Olsson J. S.; Pham T. H.; Jannasch P. Tuning poly(arylene piperidinium) anion-exchange membranes by copolymerization, partial quaternization and crosslinking. J. Membr. Sci., 2019, 578, 183-195. doi:10.1016/j.memsci.2019.01.036http://dx.doi.org/10.1016/j.memsci.2019.01.036
Ren R.; Zhang S. M.; Miller H. A.; Vizza F.; Varcoe J. R.; He Q. G. Facile preparation of an ether-free anion exchange membrane with pendant cyclic quaternary ammonium groups. ACS Appl. Energy Mater., 2019, 2(7), 4576-4581. doi:10.1021/acsaem.9b00674http://dx.doi.org/10.1021/acsaem.9b00674
Mandal M.; Huang G.; Kohl P. A. Anionic multiblock copolymer membrane based on vinyl addition polymerization of norbornenes: applications in anion-exchange membrane fuel cells. J. Membr. Sci., 2019, 570-571, 394-402. doi:10.1016/j.memsci.2018.10.041http://dx.doi.org/10.1016/j.memsci.2018.10.041
McQuade J.; Serrano M. I.; Jäkle F. Main group functionalized polymers through ring-opening metathesis polymerization (ROMP). Polymer, 2022, 246, 124739. doi:10.1016/j.polymer.2022.124739http://dx.doi.org/10.1016/j.polymer.2022.124739
Price S. C.; Ren X.; Savage A. M.; Beyer F. L. Synthesis and characterization of anion-exchange membranes based on hydrogenated poly(norbornene). Polym. Chem., 2017, 8(37), 5708-5717. doi:10.1039/c7py01084bhttp://dx.doi.org/10.1039/c7py01084b
Yuan H. M.; Liu Y.; Tsai T. H.; Liu X. H.; Kim S. B.; Gupta R.; Zhang W. X.; Ertem S. P.; Seifert S.; Herring A. M.; Coughlin E. B. Ring-opening metathesis polymerization of cobaltocenium derivative to prepare anion exchange membrane with high ionic conductivity. Polyhedron, 2020, 181, 114462. doi:10.1016/j.poly.2020.114462http://dx.doi.org/10.1016/j.poly.2020.114462
Clark T. J.; Robertson N. J.; Kostalik H. A.; Lobkovsky E. B.; Mutolo P. F.; Abruña H. D.; Coates G. W. A ring-opening metathesis polymerization route to alkaline anion exchange membranes: development of hydroxide-conducting thin films from an ammonium-functionalized monomer. J. Am. Chem. Soc., 2009, 131(36), 12888-12889. doi:10.1021/ja905242rhttp://dx.doi.org/10.1021/ja905242r
Feng L.; Zhang X. F.; Wang C.; Li X.; Zhao Y. B.; Xie X. F.; Lv Y. F. Effect of different imidazole group positions on the hydroxyl ion conductivity. Int. J. Hydrog. Energy, 2016, 41(36), 16135-16141. doi:10.1016/j.ijhydene.2016.05.252http://dx.doi.org/10.1016/j.ijhydene.2016.05.252
Zhao Y. B.; Feng L.; Gao J. J.; Zhao Y.; Wang S. B.; Ramani V.; Zhang Z. L.; Xie X. F. Study on tunable crosslinking anion exchange membranes fabrication and degradation mechanism. Int. J. Hydrog. Energy, 2016, 41(36), 16264-16274. doi:10.1016/j.ijhydene.2016.05.251http://dx.doi.org/10.1016/j.ijhydene.2016.05.251
赵玉彬, 王树博, 赵阳, 谢晓峰, 张振琳. 降冰片烯类季铵型阴离子交换膜的制备. 化工学报, 2015, 66(S1), 338-342. doi:10.11949/j.issn.0438-1157.20150356http://dx.doi.org/10.11949/j.issn.0438-1157.20150356
He X. H.; Cheng C. W.; Huang S. M.; Zhang F.; Duan Y. P.; Zhu C. Y.; Guo Y.; Wang K.; Chen D. F. Alkaline anion exchange membranes with imidazolium-terminated flexible side-chain cross-linked topological structure based on ROMP-type norbornene copolymers. Polymer, 2020, 195, 122412. doi:10.1016/j.polymer.2020.122412http://dx.doi.org/10.1016/j.polymer.2020.122412
Zhang F.; He X. H.; Cheng C. W.; Huang S. M.; Duan Y. P.; Zhu C. Y.; Guo Y.; Wang K.; Chen D. F. Bis-imidazolium functionalized self-crosslinking block polynorbornene anion exchange membrane. Int. J. Hydrog. Energy, 2020, 45(23), 13090-13100. doi:10.1016/j.ijhydene.2020.03.046http://dx.doi.org/10.1016/j.ijhydene.2020.03.046
陶进雄, 冯俊, 魏标文, 廖世军, 李秀华. 后官能化工艺制备侧链离子结构的部分氟化阴离子交换膜. 高分子学报, 2017, (12), 1975-1984. doi:10.11777/j.issn1000-3304.2017.17059http://dx.doi.org/10.11777/j.issn1000-3304.2017.17059
Xu F.; Qiu K.; Li J.; Lin B. C.; Ding J. N. Cross-linked anion exchange membranes with flexible, long-chain, bis-imidazolium cation cross-linker. Int. J. Hydrog. Energy, 2021, 46(74), 37039-37048. doi:10.1016/j.ijhydene.2021.08.181http://dx.doi.org/10.1016/j.ijhydene.2021.08.181
Zhu C. Z.; Li J. H.; Liao J. B.; Chen Q.; Xu Y. Q.; Ruan H. M.; Shen J. N. Acid enrichment via electrodialyser fabricated with poly(vinyl chloride)-based anion exchange membrane: effect of hydrophobicity of aliphatic side-chains tethered on imidazolium groups. Sep. Purif. Technol., 2022, 293, 120907. doi:10.1016/j.seppur.2022.120907http://dx.doi.org/10.1016/j.seppur.2022.120907
Xue B. X.; Wang F.; Zheng J. F.; Li S. H.; Zhang S. B. Highly stable polysulfone anion exchange membranes incorporated with bulky alkyl substituted guanidinium cations. Mol. Syst. Des. Eng., 2019, 4(5), 1039-1047. doi:10.1039/c9me00064jhttp://dx.doi.org/10.1039/c9me00064j
Kumari M.; Douglin J. C.; Dekel D. R. Crosslinked quaternary phosphonium-functionalized poly(ether ether ketone) polymer-based anion-exchange membranes. J. Membr. Sci., 2021, 626, 119167. doi:10.1016/j.memsci.2021.119167http://dx.doi.org/10.1016/j.memsci.2021.119167
Ye Y. S.; Stokes K. K.; Beyer F. L.; Elabd Y. A. Development of phosphonium-based bicarbonate anion exchange polymer membranes. J. Membr. Sci., 2013, 443, 93-99. doi:10.1016/j.memsci.2013.04.053http://dx.doi.org/10.1016/j.memsci.2013.04.053
Sun Z.; Pan J.; Guo J. N.; Yan F. The alkaline stability of anion exchange membrane for fuel cell applications: the effects of alkaline media. Adv. Sci., 2018, 5(8), 1800065. doi:10.1002/advs.201800065http://dx.doi.org/10.1002/advs.201800065
Banan R.; Bazylak A.; Zu J. Combined effects of environmental vibrations and hygrothermal fatigue on mechanical damage in PEM fuel cells. Int. J. Hydrog. Energy, 2015, 40(4), 1911-1922. doi:10.1016/j.ijhydene.2014.11.125http://dx.doi.org/10.1016/j.ijhydene.2014.11.125
Zhang H.; Niu X. L.; Zhu S. B.; Tian M.; Liu W. G. Synthesis, characterization, and enhanced aggregation-induced emission of oligomer methylacryloyl tetraphenylethylene and volatile organic compounds detection. J. Appl. Polym. Sci., 2022, 139(9), 51699. doi:10.1002/app.51699http://dx.doi.org/10.1002/app.51699
0
Views
40
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution