浏览全部资源
扫码关注微信
1.天津大学理学院 天津 300354
2.吉林大学化学学院 超分子结构与材料国家重点实验室 长春 130012
Jian-hui Wang, E-mail: wjh@tju.edu.cn
Yu-lan Chen, E-mail: yulan.chen@tju.edu.cn
Published:20 September 2023,
Published Online:30 June 2023,
Received:06 May 2023,
Accepted:23 May 2023
扫 描 看 全 文
曹晶明,王建辉,陈于蓝.基于螺吡喃和薁的机械力诱导变色高分子的研究[J].高分子学报,2023,54(09):1263-1271.
Cao Jing-ming,Wang Jian-hui,Chen Yu-lan.A Mechanochromic Polymer Based on Spiropyran and Azulene Subunits[J].ACTA POLYMERICA SINICA,2023,54(09):1263-1271.
曹晶明,王建辉,陈于蓝.基于螺吡喃和薁的机械力诱导变色高分子的研究[J].高分子学报,2023,54(09):1263-1271. DOI: 10.11777/j.issn1000-3304.2023.23125.
Cao Jing-ming,Wang Jian-hui,Chen Yu-lan.A Mechanochromic Polymer Based on Spiropyran and Azulene Subunits[J].ACTA POLYMERICA SINICA,2023,54(09):1263-1271. DOI: 10.11777/j.issn1000-3304.2023.23125.
利用螺吡喃和薁这两类染料的刺激响应性和光学活性,设计合成了以薁为核、双螺吡喃取代的新型力敏团SP-Az-SP,并通过缩聚反应,制备了含SP-Az-SP的嵌段聚氨酯弹性体. 对小分子力敏团在酸碱刺激、光照以及对弹性体在受力条件下的光学性质进行了系统的研究,发现了SP-Az-SP溶液对多重刺激具有正交响应性质,形成的螺吡喃开环产物呈现优异可调的生色效应. 含SP-Az-SP的聚氨酯也表现出灵敏的力诱导变色性质,证明了螺吡喃和薁基元的耦合在开发多重刺激响应性高分子材料及调控机械力诱导变色高分子的光学信号灵敏度方面的可行性,其有望应用于高对比度的光学应力探测和指示等领域.
We report a new kind of mechanophore and the corresponding polyurethane that exhibit a vividly detectable mechanochromism. Such optical features rely on the synergistic coupling of an azulene (Az) core and two spiropyran (SP) units into one chromophore. The use of the acid-
and light-induced chromogenic ring-opening reactions of SP and the acid-induced protonation reaction of Az reveals that the three subunits in this mechanophore can be activated orthogonally
thus generating switchable optical responses with high color contrast. The polyurethane is mechanically activated using sonication (in solution state) and tensile deformation (in bulk state)
which exhibits a green-to-blue mechanochromism. Due to its excellent mechanochromism
the mechanochromic polymer shows great potential in stress sensing and damage detection. Our strategy based on the coupling of multi-responsive organic dyes into one chromophore will open a new avenue to regulate the sensitivity of mechanochromophores
and to develop the stimuli-responsive materials with multiple functions.
机械力诱导变色高分子光致变色酸致变色螺吡喃薁聚氨酯
Mechanochromic polymersPhotochromismAcid induced chromismSpiropyranAzulenePolyurethane
Wang X. H. Biodegradable polymers, history tells polymer science's fortune. Chinese J. Polym. Sci., 2022, 40(5), 431-432. doi:10.1007/s10118-022-2737-xhttp://dx.doi.org/10.1007/s10118-022-2737-x
Liu S. Y. Challenges and opportunities of precision polymer chemistry. Chinese J. Polym. Sci., 2022, 40(10), 1129-1130. doi:10.1007/s10118-022-2863-5http://dx.doi.org/10.1007/s10118-022-2863-5
Romero-Fierro D.; Bustamante-Torres M.; Bravo-Plascencia F.; Esquivel-Lozano A.; Ruiz J. C.; Bucio E. Recent trends in magnetic polymer nanocomposites for aerospace applications: a review. Polymers, 2022, 14(19), 4084. doi:10.3390/polym14194084http://dx.doi.org/10.3390/polym14194084
Wu M. J.; Li Y. R.; Yuan W.; De Bo G.; Cao Y.; Chen Y. L. Cooperative and geometry-dependent mechanochromic reactivity through aromatic fusion of two rhodamines in polymers. J. Am. Chem. Soc., 2022, 144(37), 17120-17128. doi:10.1021/jacs.2c07015http://dx.doi.org/10.1021/jacs.2c07015
Mostafavi S.; Tong F.; Dugger T. W.; Kisailus D.; Bardeen C. J. Noncovalent photochromic polymer adhesion. Macromolecules, 2018, 51(6), 2388-2394. doi:10.1021/acs.macromol.8b00036http://dx.doi.org/10.1021/acs.macromol.8b00036
Li M. W.; Yuan Y.; Chen Y. L. Bischler-napieralski cyclization: a versatile reaction towards functional aza-PAHs and their conjugated polymers. Chin. J. Chem., 2021, 39(11), 3101-3115. doi:10.1002/cjoc.202100419http://dx.doi.org/10.1002/cjoc.202100419
Samanta A.; Chen H.; Samanta P.; Popov S.; Sychugov I.; Berglund L. A. Reversible dual-stimuli-responsive chromic transparent wood biocomposites for smart window applications. ACS Appl. Mater. Interfaces, 2021, 13(2), 3270-3277. doi:10.1021/acsami.0c21369http://dx.doi.org/10.1021/acsami.0c21369
肖楠, 于恒哲, 高文莉, 阮永红, 郑锦丽, 许元泽, 翁文桂. 基于螺𫫇嗪的快速可逆力响应性聚合物的研究. 高分子学报, 2021, 52 (9), 1053-1057. doi:10.11777/j.issn1000-3304.2021.21140http://dx.doi.org/10.11777/j.issn1000-3304.2021.21140
Santha Kumar A. R. S.; Padmakumar A.; Kalita U.; Samanta S.; Baral A.; Singha N. K.; Ashokkumar M.; Qiao G. G. Ultrasonics in polymer science: applications and challenges. Prog. Mater. Sci., 2023, 136, 101113. doi:10.1016/j.pmatsci.2023.101113http://dx.doi.org/10.1016/j.pmatsci.2023.101113
Gossweiler G. R.; Hewage G. B.; Soriano G.; Wang Q. M.; Welshofer G. W.; Zhao X. H.; Craig S. L. Mechanochemical activation of covalent bonds in polymers with full and repeatable macroscopic shape recovery. ACS Macro Lett., 2014, 3(3), 216-219. doi:10.1021/mz500031qhttp://dx.doi.org/10.1021/mz500031q
Jiang S. C.; Zhang L. X.; Xie T. W.; Lin Y. J.; Zhang H.; Xu Y. Z.; Weng W. G.; Dai L. Z. Mechanoresponsive PS-PnBA-PS triblock copolymers via covalently embedding mechanophore. ACS Macro Lett., 2013, 2(8), 705-709. doi:10.1021/mz400198nhttp://dx.doi.org/10.1021/mz400198n
Qian H.; Purwanto N. S.; Ivanoff D. G.; Halmes A. J.; Sottos N. R.; Moore J. S. Fast, reversible mechanochromism of regioisomeric oxazine mechanophores: developing in situ responsive force probes for polymeric materials. Chem, 2021, 7(4), 1080-1091. doi:10.1016/j.chempr.2021.02.014http://dx.doi.org/10.1016/j.chempr.2021.02.014
Robb M. J.; Kim T. A.; Halmes A. J.; White S. R.; Sottos N. R.; Moore J. S. Regioisomer-specific mechanochromism of naphthopyran in polymeric materials. J. Am. Chem. Soc., 2016, 138(38), 12328-12331. doi:10.1021/jacs.6b07610http://dx.doi.org/10.1021/jacs.6b07610
Gossweiler G. R.; Kouznetsova T. B.; Craig S. L. Force-rate characterization of two spiropyran-based molecular force probes. J. Am. Chem. Soc., 2015, 137(19), 6148-6151. doi:10.1021/jacs.5b02492http://dx.doi.org/10.1021/jacs.5b02492
Chen Y. L.; Sommer M.; Weder C. Mechanochromic polymers. Macromol. Rapid Commun., 2021, 42(1), 202000685. doi:10.1002/marc.202000685http://dx.doi.org/10.1002/marc.202000685
Chen Y. J.; Mellot G.; van Luijk D.; Creton C.; Sijbesma R. P. Mechanochemical tools for polymer materials. Chem. Soc. Rev., 2021, 50(6), 4100-4140. doi:10.1039/d0cs00940ghttp://dx.doi.org/10.1039/d0cs00940g
McFadden M. E.; Robb M. J. Generation of an elusive permanent merocyanine via a unique mechanochemical reaction pathway. J. Am. Chem. Soc., 2021, 143(21), 7925-7929. doi:10.1021/jacs.1c03865http://dx.doi.org/10.1021/jacs.1c03865
Vidavsky Y.; Yang S. J.; Abel B. A.; Agami I.; Diesendruck C. E.; Coates G. W.; Silberstein M. N. Enabling room-temperature mechanochromic activation in a glassy polymer: synthesis and characterization of spiropyran polycarbonate. J. Am. Chem. Soc., 2019, 141(25), 10060-10067. doi:10.1021/jacs.9b04229http://dx.doi.org/10.1021/jacs.9b04229
Cao B. H.; Chen W.; Wei W. Y.; Chen Y. L.; Yuan Y. Carbon dots intensified mechanochemiluminescence from waterborne polyurethanes as tunable force sensing materials. Chinese J. Polym. Sci., 2021, 39(11), 1403-1411. doi:10.1007/s10118-021-2601-4http://dx.doi.org/10.1007/s10118-021-2601-4
Deng Y. K.; Yuan Y.; Chen Y. L. Covalently cross-linked and mechanochemiluminescent polyolefins capable of self-healing and self-reporting. CCS Chem., 2021, 3(5), 1316-1324. doi:10.31635/ccschem.020.202000303http://dx.doi.org/10.31635/ccschem.020.202000303
Wu M. J.; Guo Z.; He W. Y.; Yuan W.; Chen Y. L. Empowering self-reporting polymer blends with orthogonal optical properties responsive in a broader force range. Chem. Sci., 2020, 12(4), 1245-1250. doi:10.1039/d0sc06140ahttp://dx.doi.org/10.1039/d0sc06140a
Wu Z.; Wang Q.; Li P. Y.; Fang B.; Yin M. Z. Photochromism of neutral spiropyran in the crystalline state at room temperature. J. Mater. Chem. C, 2021, 9, 6290-6296. doi:10.1039/d1tc00974ehttp://dx.doi.org/10.1039/d1tc00974e
Su X.; Ji Y.; Pan W. T.; Chen S. Q.; Zhang Y. M.; Lin T. T.; Liu L. L.; Li M. J.; Liu Y. F.; Zhang S. X. A. Pyrene spiropyran dyad: solvato-, acido- and mechanofluorochromic properties and its application in acid sensing and reversible fluorescent display. J. Mater. Chem. C, 2018, 6(26), 6940-6948. doi:10.1039/c8tc02208ahttp://dx.doi.org/10.1039/c8tc02208a
Duan H. T.; Zhang J. C.; Weng Y. C.; Fan Z. N.; Fan L. J. Dynamic fluorescent anti-counterfeiting labels based on conjugated polymers confined in submicron fibrous membranes. ACS Appl. Mater. Interfaces, 2022, 14(28), 32510-32521. doi:10.1021/acsami.2c06965http://dx.doi.org/10.1021/acsami.2c06965
Jeong Y. J.; Yoo E. J.; Kim L. H.; Park S.; Jang J.; Kim S. H.; Lee S. W.; Park C. E. Light-responsive spiropyran based polymer thin films for use in organic field-effect transistor memories. J. Mater. Chem. C, 2016, 4(23), 5398-5406. doi:10.1039/c6tc00798hhttp://dx.doi.org/10.1039/c6tc00798h
Genovese M. E.; Athanassiou A.; Fragouli D. Photoactivated acidochromic elastomeric films for on demand acidic vapor sensing. J. Mater. Chem. A, 2015, 3(44), 22441-22447. doi:10.1039/c5ta06118khttp://dx.doi.org/10.1039/c5ta06118k
Davis D. A.; Hamilton A.; Yang J. L.; Cremar L. D.; Van Gough D.; Potisek S. L.; Ong M. T.; Braun P. V.; Martínez T. J.; White S. R.; Moore J. S.; Sottos N. R. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature, 2009, 459(7243), 68-72. doi:10.1038/nature07970http://dx.doi.org/10.1038/nature07970
Li M.; Zhang Q.; Zhou Y. N.; Zhu S. P. Let spiropyran help polymers feel force. Prog. Polym. Sci., 2018, 79, 26-39. doi:10.1016/j.progpolymsci.2017.11.001http://dx.doi.org/10.1016/j.progpolymsci.2017.11.001
Chen Y. J.; Sanoja G.; Creton C. Mechanochemistry unveils stress transfer during sacrificial bond fracture of tough multiple network elastomers. Chem. Sci., 2021, 12(33), 11098-11108. doi:10.1039/d1sc03352bhttp://dx.doi.org/10.1039/d1sc03352b
Lee C. K.; Beiermann B. A.; Silberstein M. N.; Wang J.; Moore J. S.; Sottos N. R.; Braun P. V. Exploiting force sensitive spiropyrans as molecular level probes. Macromolecules, 2013, 46(10), 3746-3752. doi:10.1021/ma4005428http://dx.doi.org/10.1021/ma4005428
Xin H. S.; Gao X. K. Application of azulene in constructing organic optoelectronic materials: new tricks for an old dog. ChemPlusChem, 2017, 82(7), 945-956. doi:10.1002/cplu.201700039http://dx.doi.org/10.1002/cplu.201700039
Fu X. Y.; Han H.; Zhang D.; Yu H.; He Q. L.; Zhao D. H. A polycyclic aromatic hydrocarbon diradical with pH-responsive magnetic properties. Chem. Sci., 2020, 11(21), 5565-5571. doi:10.1039/d0sc00770fhttp://dx.doi.org/10.1039/d0sc00770f
Hou I. C.; Berger F.; Narita A.; Müllen K.; Hecht S. Proton-gated ring-closure of a negative photochromic azulene-based diarylethene. Angew. Chem. Int. Ed., 2020, 59(42), 18532-18536. doi:10.1002/anie.202007989http://dx.doi.org/10.1002/anie.202007989
Xin H. S.; Hou B.; Gao X. K. Azulene-based π-functional materials: design, synthesis, and applications. Acc. Chem. Res., 2021, 54(7), 1737-1753. doi:10.1021/acs.accounts.0c00893http://dx.doi.org/10.1021/acs.accounts.0c00893
He W. Y.; Yuan Y.; Wu M. J.; Li X. X.; Shen Y. B.; Qu Z. Y.; Chen Y. L. Multicolor chromism from a single chromophore through synergistic coupling of mechanochromic and photochromic subunits. Angew. Chem. Int. Ed., 2023, 62(11), e202218785. doi:10.1002/anie.202218785http://dx.doi.org/10.1002/anie.202218785
O'Bryan G.; Wong B. M.; McElhanon J. R. Stress sensing in polycaprolactone films via an embedded photochromic compound. ACS Appl. Mater. Interfaces, 2010, 2(6), 1594-1600. doi:10.1021/am100050vhttp://dx.doi.org/10.1021/am100050v
0
Views
83
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution