浏览全部资源
扫码关注微信
1.东华大学,纤维材料改性国家重点实验室,苏州 215227
2.东华大学,材料科学与工程学院,上海 201620
3.江苏恒力化纤股份有限公司,苏州 215227
Xiang Yao, E-mail: yaoxiang@dhu.edu.cn;
Yao-peng Zhang, E-mail: zyp@dhu.edu.cn
Published:20 November 2023,
Published Online:08 September 2023,
Received:08 May 2023,
Accepted:30 June 2023
扫 描 看 全 文
刘洋,姚响,周勇成等.废旧棉再生浆粕聚合度对其Lyocell纺丝及纤维力学性能的影响[J].高分子学报,2023,54(11):1762-1771.
Liu Yang,Yao Xiang,Zhou Yong-cheng,et al.Effects of the Polymerization Degree of Recycled Cotton Pulp on Its Lyocell Spinning and Fiber Mechanical Properties[J].Acta Polymerica Sinica,2023,54(11):1762-1771.
刘洋,姚响,周勇成等.废旧棉再生浆粕聚合度对其Lyocell纺丝及纤维力学性能的影响[J].高分子学报,2023,54(11):1762-1771. DOI: 10.11777/j.issn1000-3304.2023.23127.
Liu Yang,Yao Xiang,Zhou Yong-cheng,et al.Effects of the Polymerization Degree of Recycled Cotton Pulp on Its Lyocell Spinning and Fiber Mechanical Properties[J].Acta Polymerica Sinica,2023,54(11):1762-1771. DOI: 10.11777/j.issn1000-3304.2023.23127.
为探索废旧棉再生浆粕聚合度对其Lyocell纺丝可纺性及纤维力学性能的影响,通过调整浆粕制备工艺,制备了不同聚合度(DP300~DP1172)的废旧棉再生浆粕,并考察了聚合度对再生浆粕的溶解性能、纺丝液的可纺性能以及所制备再生Lyocell纤维力学性能的影响. 结果表明:废旧棉再生浆粕的聚合度显著偏低(DP300)时,纺丝稳定性相对较差;严重偏高(DP1172)时,无法连续稳定纺丝;在居中的聚合度范围内可连续稳定纺丝. 随着浆粕聚合度的增高(DP300~DP725),所制备再生Lyocell纤维的干态断裂强度(3.35~4.72 cN/dtex)和模量(70.9~146.19 cN/dtex)等力学性能亦随之明显提升. 相关研究有望为废旧棉织物回收制备高性能Lyocell纤维提供参考.
Under relatively stable fabrication conditions of the recycled pulp (RP)
significant fluctuations in the degree of polymerization (DP) of the RP inevitably occurs due to the inherent batch to batch differences in waste cotton textiles. In order to invetigate the influence of the DP of recycled cotton pulp on its Lyocell spinning process and fiber mechanical properties
a series of recycled cotton pulps with different DP (from 300 to 1172) were prepared by adjusting the fabrication process of RP. Furthermore
the effects of DP on the solubility of RP in
N
-methylmorpholine-
N
-oxide
the spinnability of corresponding spinning solutions
and the mechanical properties of the regenerated Lyocell fibers were firstly investigated. Results showed that the solubility of the RP with low DP (300‒725) was good and that with higher DP (1172) was relatively poor. As for the spinnability of corresponding spinning dope
the RP with significantly low DP (DP 300) shows relatively poor spinnability
while the RP with severely high DP (DP 1172) cannot be used for spinning. Those with appropriate range of intermediate DP can be used for continuous and stable spinning. In addition
the dry tensile strength (3.35‒4.72 cN/dtex) and modulus (70.9‒146.19 cN/dtex) of the regenerated Lyocell fibers were significantly improved as the increase of DP ranging from 300 to 725. Overall
the regenerated Lyocell fibers prepared from the RP with DP 578 and DP 725 present excellent mechanical properties similar to those of the Lyocell fibers fabricated from commercial COSMO wood pulp. An appropriate DP range of recycled cotton pulp suitable for Lyocell spinning utilization was obtained. This is expected to provide valuable guidance for industrial application of recycling waste cotton textiles to fabricate Lyocell fibers with high-performance.
废纺高值回收利用废旧棉再生浆粕聚合度Lyocell纤维可纺性
High value recycling of waste textileRecycled pulp from waste cotton textilesDegree of polymerizationLyocell fiberSpinnability
黄智宇, 邢桐贺, 何安南, 骆宇新, 张玉, 翟丽莎, 梅帆, 梁子辉, 刘欣, 余臻伟, 徐卫林, 陈凤翔. 废旧纺织品的资源化循环再生利用研究进展. 科学通报, 2023, 68(Z1), 188-203.
张玮, 刘姝瑞, 张明宇, 谭艳君. 废旧纺织品回收再利用的研究进展. 纺织科学与工程学报, 2023, 40(1), 96-102. doi:10.3969/j.issn.2096-5184.2023.01.017http://dx.doi.org/10.3969/j.issn.2096-5184.2023.01.017
王佳平, 杨浚源, 程春祖, 宋俊, 杨洋, 薛振军. 废旧棉织物的回收、溶解及纺丝再利用研究进展. 合成纤维, 2022, 51(2): 11-16. doi:10.3969/j.issn.1001-7054.2022.2.hcxw202202003http://dx.doi.org/10.3969/j.issn.1001-7054.2022.2.hcxw202202003
郭燕. 我国废旧纺织品循环利用标准体系现状分析. 再生资源与循环经济, 2022, 15(11), 14-18. doi:10.3969/j.issn.1674-0912.2022.11.003http://dx.doi.org/10.3969/j.issn.1674-0912.2022.11.003
陈龙, 周哲, 张军, 徐世美, 倪延朋. 废旧棉与涤纶纺织品化学法循环再生利用的研究进展. 纺织学报, 2022, 43(5), 43-48.
韩非, 郎晨宏, 邱夷平. 废旧纺织品回收体系的研究进展. 棉纺织技术, 2022, 50(4), 42-48. doi:10.3969/j.issn.1001-7415.2022.04.014http://dx.doi.org/10.3969/j.issn.1001-7415.2022.04.014
Yang G. S.; Zhou Y.; Zhang H. H.; Wang S.; Yao X.; Shao H. L. Preparation and characterization of dissolving pulp and Lyocell fibers from corncob. Cellulose, 2023, 30(8), 4841-4853. doi:10.1007/s10570-023-05179-8http://dx.doi.org/10.1007/s10570-023-05179-8
Kim T.; Kim D.; Park Y. Recent progress in regenerated fibers for "green" textile products. J. Clean. Prod., 2022, 376, 134226. doi:10.1016/j.jclepro.2022.134226http://dx.doi.org/10.1016/j.jclepro.2022.134226
Shen Y.; Yang G. S.; Edgar K. J.; Zhang H. H.; Shao H. L. Effect of Lyocell fiber cross-sectional shape on structure and properties of lyocell/PLA composites. J. Polym. Eng., 2022, 42(9), 868-875. doi:10.1515/polyeng-2022-0070http://dx.doi.org/10.1515/polyeng-2022-0070
Zhang S. K.; Chen C. X.; Duan C.; Hu H. C.; Li H. L.; Li J. G.; Liu Y. S.; Ma X. J.; Stavik J.; Ni Y. H. Regenerated cellulose by the Lyocell process, a brief review of the process and properties. BioResources, 2018, 13(2), 4577-4592. doi:10.15376/biores.13.2.zhanghttp://dx.doi.org/10.15376/biores.13.2.zhang
Adnan M.; Moses J. A study on the thermophysiological and tactile comfort properties of silk/Lyocell blended fabrics. Materia-Rio De Janeiro, 2020, 25(3), 81-89. doi:10.1590/s1517-707620200003.1096http://dx.doi.org/10.1590/s1517-707620200003.1096
Gong C.; Ni J. P.; Fan S. J.; Zhang Y.; Yang B.; Su Z. H. Upgrading paper-grade pulp as dissolving pulp for Lyocell fiber preparation. Coatings, 2022, 13(1), 3. doi:10.3390/coatings13010003http://dx.doi.org/10.3390/coatings13010003
Park J.; Kwac L.; Kim H.; Park K. Y.; Koo K.; Ryu D. H.; Shin H. Electromagnetic-interference-shielding effectiveness of Lyocell-based carbon fabrics carbonized at various temperatures. Molecules, 2022, 27(17), 5392. doi:10.3390/molecules27175392http://dx.doi.org/10.3390/molecules27175392
季柳炎. 莱赛尔市场活力持续释放. 纺织科学研究, 2023, 34(4), 44-47.
任建春, 陈平. Lyocell纤维的发展现状及市场预测. 人造纤维, 2020, 50(5), 14-19.
Edgar K. J.; Zhang H. H. Antibacterial modification of Lyocell fiber: a review. Carbohydr. Polym., 2020, 250, 116932. doi:10.1016/j.carbpol.2020.116932http://dx.doi.org/10.1016/j.carbpol.2020.116932
李勇, 周兰阳, 方斌, 叶小波, 周爱军, 孙义民. Lyocell纤维用溶解浆的来源和制备概述. 纤维素科学与技术, 2022, 30(4), 49-58.
汪少朋, 吴宝宅, 何洲. 废旧纺织品回收与资源化再生利用技术进展. 纺织学报, 2021, 42(8), 34-40. doi:10.13475/j.fzxb.20210301207http://dx.doi.org/10.13475/j.fzxb.20210301207
Lu L.; Fan W.; Meng X.; Xue L.; Ge S.; Wang C.; Foong S. Y.; Tan C. S. Y.; Sonne C.; Aghbashlo M.; Tabatabaei M.; Lam S. S. Current recycling strategies and high-value utilization of waste cotton. Sci. Total Environ., 2023, 856, 158798. doi:10.1016/j.scitotenv.2022.158798http://dx.doi.org/10.1016/j.scitotenv.2022.158798
Haule L. V.; Carr C. M.; Rigout M. Preparation and physical properties of regenerated cellulose fibres from cotton waste garments. J. Clean. Prod., 2016, 112, 4445-4451. doi:10.1016/j.jclepro.2015.08.086http://dx.doi.org/10.1016/j.jclepro.2015.08.086
Lawson L.; Degenstein L. M.; Bates B.; Chute W. D.; King D.; Dolez P. I. Cellulose textiles from hemp biomass: Opportunities and challenges. Sustainability, 2022, 14(22), 15337. doi:10.3390/su142215337http://dx.doi.org/10.3390/su142215337
Lemma H. B.; Freund C.; Yimam A.; Steffen F.; Saake B. Prehydrolysis soda pulping of enset fiber for production of dissolving grade pulp and biogas. RSC Adv., 2023, 13(7), 4314-4323. doi:10.1039/d2ra07220chttp://dx.doi.org/10.1039/d2ra07220c
Su P. P.; Granholm K.; Harju L.; Ivaska A. Determination of equilibrium constants for sorption of metal ions to pulp by a batch method. Nord. Pulp Pap. Res. J., 2013, 28(4), 521-528. doi:10.3183/npprj-2013-28-04-p521-528http://dx.doi.org/10.3183/npprj-2013-28-04-p521-528
Nemati M.; Samariha A. Evaluation of the effects of transition metal ions on the optical aging and whiteness of chemimechanical pulp. BioResources, 2022, 17(3), 4444-4451. doi:10.15376/biores.17.3.4444-4451http://dx.doi.org/10.15376/biores.17.3.4444-4451
Melikhov I.; Bacher M.; Hosoya T.; Hettegger H.; Potthast A.; Rosenau T. On the chemical fate of propyl gallate as stabilizer in Lyocell spinning dopes. Cellulose, 2023, 30(8), 5373-5390. doi:10.1007/s10570-023-05183-yhttp://dx.doi.org/10.1007/s10570-023-05183-y
Wan C.; Chen X.; Lv F.; Chen X.; Meng L.; Li L. Biaxial stretch-induced structural evolution of polyethylene gel films: Crystal melting recrystallization and tilting. Polymer, 2019, 164, 59-66. doi:10.1016/j.polymer.2019.01.021http://dx.doi.org/10.1016/j.polymer.2019.01.021
Zhao H.; Zhang Q.; Xia Z.; Yang E.; Zhang M.; Wang Y.; Ji Y.; Chen W.; Wang D.; Meng L.; Li L. Elucidation of the relationships of structure-process-property for different ethylene/α-olefin copolymers during film blowing: an in-situ synchrotron radiation X-ray scattering study. Polym. Test., 2020, 85, 106439. doi:10.1016/j.polymertesting.2020.106439http://dx.doi.org/10.1016/j.polymertesting.2020.106439
杨娟, 韦荃, 杜少飞. 狼毒草韧皮纤维与5种藏纸纤维超微结构的对比研究. 中国造纸学报, 2021, 36(3), 87-92. doi:10.11981/j.issn.1000-6842.2021.03.87http://dx.doi.org/10.11981/j.issn.1000-6842.2021.03.87
连素梅, 叶曦雯, 罗忻, 史建峰, 李朋, 牛增元. 棉纤维结构与理化性能关系分析. 棉花科学, 2018, 40(1), 48-52. doi:10.3969/j.issn.2095-3143.2018.01.011http://dx.doi.org/10.3969/j.issn.2095-3143.2018.01.011
孔硕, 倪建萍, 范述捷, 龚琛, 苏振华. 植物纤维在NMMO溶液中溶解性能研究进展. 中国造纸学报, 2023, 38(1), 108-119. doi:10.11981/j.issn.1000-6842.2023.01.108http://dx.doi.org/10.11981/j.issn.1000-6842.2023.01.108
Villar L.; Pita M.; Paez J.; Sánchez P. B. Dissolution kinetics of cellulose in ionic solvents by polarized light microscopy. Cellulose, 2023, 30(5), 3027-3039. doi:10.1007/s10570-022-05036-0http://dx.doi.org/10.1007/s10570-022-05036-0
张慧慧, 魏孟媛, 邵惠丽, 胡学超. 浆粕原料对轮胎帘子线用Lyocell纤维性能的影响. 东华大学学报(自然科学版), 2010, 36(5), 486-490. doi:10.3969/j.issn.1671-0444.2010.05.002http://dx.doi.org/10.3969/j.issn.1671-0444.2010.05.002
沈新元. 高分子材料加工原理. 第3版. 北京: 中国纺织出版社, 2014.
陈晓明, 张璟焱, 徐文总, 刘瑾. 关于高分子液体“高黏度”和“剪切变稀”的讨论. 高分子通报, 2019, (6), 68-71.
程雨桐, 汪东, 袁红梅, 曹石林, 陈礼辉, 黄六莲, 林珊. 不同溶剂溶解制备纤维素溶液及其流变性能. 中国造纸学报, 2020, 35(1), 1-6.
沈弋弋, 刘瑞刚, 胡学超, 邵惠丽. 棉纤维素/N-甲基吗啉-N-氧化物—水合物(NMMO·H2O)溶液的流变性能. 中国纺织大学学报, 2000, 26(5), 1-7.
郑乾帅, 高敏, 赵庆波, 徐纪刚, 程春祖, 刘晓辉. OMMT/NMMO/纤维素纺丝液流变性能研究. 合成纤维, 2022, 51(2), 1-6. doi:10.3969/j.issn.1001-7054.2022.2.hcxw202202001http://dx.doi.org/10.3969/j.issn.1001-7054.2022.2.hcxw202202001
刘卫, 齐玲玲. 干法腈纶长丝的可纺性分析. 山东纺织科技, 2003, 44(3), 4-5. doi:10.3969/j.issn.1009-3028.2003.03.002http://dx.doi.org/10.3969/j.issn.1009-3028.2003.03.002
杨革生, 魏孟媛, 杨彦菊, 张慧慧, 邵惠丽. 纤维素性质对纤维素溶液可纺性以及纤维性能的影响? 纤维素科学与技术, 2019, 27(1), 1-7.
Cui S. Q.; Zhang Y.; Liu C. J.; Lou S. H.; Zhang Y.; Zhang Y. M.; Wang H. P. The influence of the multi-level structure under high drawing on the preparation of high strength Lyocell fiber. Cellulose, 2022, 29(2), 751-762. doi:10.1007/s10570-021-04364-xhttp://dx.doi.org/10.1007/s10570-021-04364-x
李健, 黄庆, 李鑫. PGLA纤维拉伸过程中结晶与取向的变化. 纺织学报, 2011, 32(1), 1-5.
0
Views
16
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution