浏览全部资源
扫码关注微信
北京分子科学国家实验室 北京大学高分子化学与物理教育部重点实验室 软物质科学与工程中心 化学与分子工程学院 北京 100871
Yu-guo Ma, E-mail: ygma@pku.edu.cn
Published:20 October 2023,
Published Online:01 September 2023,
Received:16 May 2023,
Accepted:30 June 2023
扫 描 看 全 文
莫依天,刘衣铭,王晓鸽等.锌卟啉共价有机框架和共轭微孔聚合物的光催化可逆加成-断裂链转移聚合[J].高分子学报,2023,54(10):1521-1532.
Mo Yi-tian,Liu Yi-ming,Wang Xiao-ge,et al.Zinc Porphyrin-based Covalent Organic Framework and Conjugated Microporous Polymer as Heterogeneous Photocatalysts for Reversible Addition-fragmentation Chain Transfer Polymerization[J].ACTA POLYMERICA SINICA,2023,54(10):1521-1532.
莫依天,刘衣铭,王晓鸽等.锌卟啉共价有机框架和共轭微孔聚合物的光催化可逆加成-断裂链转移聚合[J].高分子学报,2023,54(10):1521-1532. DOI: 10.11777/j.issn1000-3304.2023.23134.
Mo Yi-tian,Liu Yi-ming,Wang Xiao-ge,et al.Zinc Porphyrin-based Covalent Organic Framework and Conjugated Microporous Polymer as Heterogeneous Photocatalysts for Reversible Addition-fragmentation Chain Transfer Polymerization[J].ACTA POLYMERICA SINICA,2023,54(10):1521-1532. DOI: 10.11777/j.issn1000-3304.2023.23134.
制备基于锌卟啉共价有机框架(COFs)和共轭微孔聚合物(CMPs)的异相光催化剂用于催化光诱导电子转移可逆加成-断裂链转移(PET-RAFT)聚合. 这些光催化剂可以高效地将电子转移到链转移剂制备得到具有窄分子量分布(<1.20)和高链端保真度的聚丙烯酰胺和聚丙烯酸酯,聚合速率高于具有相似构建单元的卟啉或镍卟啉光催化体系. 同时,对于锌卟啉COF和CMP材料,不同堆积模式和共轭程度影响了光催化剂的结构和光物理性质. 比较两者的结构性质和催化性能,说明了在光控聚合中选择高效催化性质的构建单元是催化剂设计的关键要素. 此外,相比于COF,CMP光催化剂具有更高的化学稳定性,可以被有效分离并循环使用. 这项工作阐明了多孔有机聚合物在光控聚合中的设计要素,为实现异相的光聚合提供重要借鉴.
Zinc porphyrin-based covalent organic framework (COF) DhaTph-Zn-COF and conjugated microporous polymer (CMP) DhaTph-Zn-CMP as heterogeneous photocatalysts were prepared to activate photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under broad-range wavelengths. They could efficiently transfer electrons to chain transfer agents to synthesize polyacrylamides and polyacrylates with controllable molecular weight
narrow molecular weight distribution (
<
1.20)
and high chain-end fidelity. The apparent polymerization rate constants were 0.0522 h
-1
and 0.0621 h
-1
for polymerization of
N
N
-dimethacrylamide with 2.5 mg/mL DhaTph-Zn-COF or DhaTph-Zn-CMP
respectively
under yellow light irradiation. The different stacking patterns and the degree of conjugation for the freshly prepared COF and CMP materials affected structure and photophysical properties
such as crystallinity
specific surface area
band gap
fluorescence lifetime
charge transfer resistance
etc
. Although DhaTph-Zn-COF had an ordered stacking with better electron transfer properties
their similar catalytic properties indicated that the stacking patterns were not the primary factor to enhance the performance of photocatalysts. Meanwhile
the difference in photocatalytic polymerization of metalloporphyrin-based COFs displayed that a building block (zinc porphyrin) with high photocatalytic efficiency in a homogenous system is vital to the design of the heterogeneous photocatalysts for polymerization. Besides
the stability of photocatalysts directly affected the efficiency of catalytic cycles. Compared with DhaTph-Zn-COF
the amorphous DhaTph-Zn-CMP showed more robust chemical stability after several rounds of polymerization and could be used at least five times. The reduced efficiency of DhaTph-Zn-COF after recycling resulted from the loss of active components. The scanning electron microscopy (SEM) revealed the morphological difference between the COF and CMP photocatalysts. Better stability could be credited to the tight-packed particles formed by the disorderly stacked structure
which avoided the destruction by external factors such as monomers
solvents
and stir. This work provides insights into the design factors of heterogeneous POP photocatalysts for photopolymerization and promotes the development of efficient semiconductors and heterogeneous photocatalysts.
共价有机框架共轭微孔聚合物异相光催化剂光诱导电子转移可逆加成-断裂链转移聚合
Covalent organic frameworksConjugated microporous polymersHeterogeneous photocatalystsPhotoinduced electron transfer reversible addition-fragmentation chain transfer polymerization
Jenkins A. D.; Jones R. G.; Moad G. Terminology for reversible-deactivation radical polymerization previously called "controlled" radical or "living" radical polymerization (IUPAC recommendations 2010). Pure Appl. Chem., 2009, 82(2), 483-491. doi:10.1351/pac-rep-08-04-03http://dx.doi.org/10.1351/pac-rep-08-04-03
Fu C. K.; Xu J. T.; Tao L.; Boyer C. Combining enzymatic monomer transformation with photoinduced electron transfer-reversible addition-fragmentation chain transfer for the synthesis of complex multiblock copolymers. ACS Macro Lett., 2014, 3(7), 633-638. doi:10.1021/mz500245khttp://dx.doi.org/10.1021/mz500245k
Perrier S. 50th Anniversary perspective: RAFT polymerization—a user guide. Macromolecules, 2017, 50(19), 7433-7447. doi:10.1021/acs.macromol.7b00767http://dx.doi.org/10.1021/acs.macromol.7b00767
Quan Q. Z.; Ma M. Y.; Wang Z. T.; Gu Y.; Chen M. Visible-light-enabled organocatalyzed controlled alternating terpolymerization of perfluorinated vinyl ethers. Angew. Chem. Int. Ed., 2021, 60(37), 20443-20451. doi:10.1002/anie.202107066http://dx.doi.org/10.1002/anie.202107066
Shanmugam S.; Cuthbert J.; Kowalewski T.; Boyer C.; Matyjaszewski K. Catalyst-free selective photoactivation of RAFT polymerization: a facile route for preparation of comblike and bottlebrush polymers. Macromolecules, 2018, 51(19), 7776-7784. doi:10.1021/acs.macromol.8b01708http://dx.doi.org/10.1021/acs.macromol.8b01708
An Z. S. 100th anniversary of macromolecular science viewpoint: achieving ultrahigh molecular weights with reversible deactivation radical polymerization. ACS Macro Lett., 2020, 9(3), 350-357. doi:10.1021/acsmacrolett.0c00043http://dx.doi.org/10.1021/acsmacrolett.0c00043
Fu C. K.; Xu J. T.; Boyer C. Photoacid-mediated ring opening polymerization driven by visible light. Chem. Commun., 2016, 52(44), 7126-7129. doi:10.1039/c6cc03084jhttp://dx.doi.org/10.1039/c6cc03084j
Kottisch V.; Michaudel Q.; Fors B. P. Photocontrolled interconversion of cationic and radical polymerizations. J. Am. Chem. Soc., 2017, 139(31), 10665-10668. doi:10.1021/jacs.7b06661http://dx.doi.org/10.1021/jacs.7b06661
Shanmugam S.; Xu J. T.; Boyer C. Photocontrolled living polymerization systems with reversible deactivations through electron and energy transfer. Macromol. Rapid Commun., 2017, 38(13), 1700143. doi:10.1002/marc.201700143http://dx.doi.org/10.1002/marc.201700143
Corrigan N.; Yeow J.; Judzewitsch P.; Xu J. T.; Boyer C. Seeing the light: advancing materials chemistry through photopolymerization. Angew. Chem. Int. Ed., 2019, 58(16), 5170-5189. doi:10.1002/anie.201805473http://dx.doi.org/10.1002/anie.201805473
Shanmugam S.; Xu J. T.; Boyer C. Photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of vinyl acetate and N-vinylpyrrolidinone: kinetic and oxygen tolerance study. Macromolecules, 2014, 47(15), 4930-4942. doi:10.1021/ma500842uhttp://dx.doi.org/10.1021/ma500842u
Xu J. T.; Jung K.; Atme A.; Shanmugam S.; Boyer C. A robust and versatile photoinduced living polymerization of conjugated and unconjugated monomers and its oxygen tolerance. J. Am. Chem. Soc., 2014, 136(14), 5508-5519. doi:10.1021/ja501745ghttp://dx.doi.org/10.1021/ja501745g
Song Y. N.; Kim Y.; Noh Y.; Singh V. K.; Behera S. K.; Abudulimu A.; Chung K.; Wannemacher R.; Gierschner J.; Lüer L.; Kwon M. S. Organic photocatalyst for ppm-level visible-light-driven reversible addition-fragmentation chain-transfer (RAFT) polymerization with excellent oxygen tolerance. Macromolecules, 2019, 52(15), 5538-5545. doi:10.1021/acs.macromol.9b00940http://dx.doi.org/10.1021/acs.macromol.9b00940
Wu C. Y.; Corrigan N.; Lim C. H.; Liu W. J.; Miyake G.; Boyer C. Rational design of photocatalysts for controlled polymerization: effect of structures on photocatalytic activities. Chem. Rev., 2022, 122(6), 5476-5518. doi:10.1021/acs.chemrev.1c00409http://dx.doi.org/10.1021/acs.chemrev.1c00409
Wu C. Y.; Shanmugam S.; Xu J. T.; Zhu J.; Boyer C. Chlorophyll a crude extract: efficient photo-degradable photocatalyst for PET-RAFT polymerization. Chem. Commun., 2017, 53(93), 12560-12563. doi:10.1039/c7cc07663khttp://dx.doi.org/10.1039/c7cc07663k
Chu Y. Y.; Corrigan N.; Wu C. Y.; Boyer C.; Xu J. T. A process for well-defined polymer synthesis through textile dyeing inspired catalyst immobilization. ACS Sustain. Chem. Eng., 2018, 6(11), 15245-15253. doi:10.1021/acssuschemeng.8b03726http://dx.doi.org/10.1021/acssuschemeng.8b03726
Zhao Y. J.; Shao S. L.; Xia J. B.; Huang Y.; Zhang Y. C.; Li X.; Cai T. Hydrophilic ultrafiltration membranes with surface-bound eosin Y for an integrated synthesis-separation system of aqueous RAFT photopolymerization. J. Mater. Chem. A, 2020, 8(19), 9825-9831. doi:10.1039/d0ta03112ghttp://dx.doi.org/10.1039/d0ta03112g
Chen C.; Zhou G. A.; Zhang H. R.; Tang X.; Cheng J. N.; Zhao Y. H.; Li X.; Cai T. Guiding the design of oxygen-tolerant and cascade syntheses of block copolymers in a metalloporphyrin-functionalized membrane reactor. Chem. Eng. J., 2021, 424, 130395. doi:10.1016/j.cej.2021.130395http://dx.doi.org/10.1016/j.cej.2021.130395
Hakobyan K.; Gegenhuber T.; McErlean C. S. P.; Müllner M. Visible-light-driven MADIX polymerisation via a reusable, low-cost, and non-toxic bismuth oxide photocatalyst. Angew. Chem. Int. Ed., 2019, 58(6), 1828-1832. doi:10.1002/anie.201811721http://dx.doi.org/10.1002/anie.201811721
Allison-Logan S.; Fu Q.; Sun Y. K.; Liu M.; Xie J. J.; Tang J. W.; Qiao G. G. From UV to NIR: a full-spectrum metal-free photocatalyst for efficient polymer synthesis in aqueous conditions. Angew. Chem. Int. Ed., 2020, 59(48), 21392-21396. doi:10.1002/anie.202007196http://dx.doi.org/10.1002/anie.202007196
Li X. E.; Zhang Y. C.; Zhao Y. J.; Zhao H. P.; Zhang B.; Cai T. Xanthene dye-functionalized conjugated porous polymers as robust and reusable photocatalysts for controlled radical polymerization. Macromolecules, 2020, 53(5), 1550-1556. doi:10.1021/acs.macromol.0c00106http://dx.doi.org/10.1021/acs.macromol.0c00106
Zhang T.; Xing G. L.; Chen W. B.; Chen L. Porous organic polymers: a promising platform for efficient photocatalysis. Mater. Chem. Front., 2020, 4(2), 332-353. doi:10.1039/c9qm00633hhttp://dx.doi.org/10.1039/c9qm00633h
Lee J., S M.; Cooper A. I. Advances in conjugated microporous polymers. Chem. Rev., 2020, 120(4), 2171-2214. doi:10.1021/acs.chemrev.9b00399http://dx.doi.org/10.1021/acs.chemrev.9b00399
Kiskan B.; Antonietti M.; Weber J. Teaching new tricks to an old indicator: pH-switchable, photoactive microporous polymer networks from phenolphthalein with tunable CO2 adsorption power. Macromolecules, 2012, 45(3), 1356-1361. doi:10.1021/ma202675vhttp://dx.doi.org/10.1021/ma202675v
Dadashi-Silab S.; Bildirir H.; Dawson R.; Thomas A.; Yagci Y. Microporous thioxanthone polymers as heterogeneous photoinitiators for visible light induced free radical and cationic polymerizations. Macromolecules, 2014, 47(14), 4607-4614. doi:10.1021/ma501001mhttp://dx.doi.org/10.1021/ma501001m
Wang Z. J.; Landfester K.; Zhang K. A. I. Hierarchically porous π-conjugated polyHIPE as a heterogeneous photoinitiator for free radical polymerization under visible light. Polym. Chem., 2014, 5(11), 3559-3562. doi:10.1039/c4py00323chttp://dx.doi.org/10.1039/c4py00323c
Pachfule P.; Acharjya A.; Roeser J.; Sivasankaran R. P.; Ye M. Y.; Brückner A.; Schmidt J.; Thomas A. Donor-acceptor covalent organic frameworks for visible light induced free radical polymerization. Chem. Sci., 2019, 10(36), 8316-8322. doi:10.1039/c9sc02601khttp://dx.doi.org/10.1039/c9sc02601k
Dadashi-Silab S.; Lorandi F.; DiTucci M. J.; Sun M. K.; Szczepaniak G.; Liu T.; Matyjaszewski K. Conjugated cross-linked phenothiazines as green or red light heterogeneous photocatalysts for copper-catalyzed atom transfer radical polymerization. J. Am. Chem. Soc., 2021, 143(25), 9630-9638. doi:10.1021/jacs.1c04428http://dx.doi.org/10.1021/jacs.1c04428
Lu Z.; Fu X. L.; Yang H. J.; Zhao Y. L.; Xiao L. Q.; Hou L. X. A covalent organic framework as a photocatalyst for atom transfer radical polymerization under white light irradiation. Polym. Chem., 2021, 12(2), 183-188. doi:10.1039/d0py01545hhttp://dx.doi.org/10.1039/d0py01545h
Lu Z.; Yang H. J.; Fu X. L.; Zhao Y. L.; Xiao L. Q.; Zhang Z. F.; Hou L. X. Visible light-regulated heterogeneous catalytic PET-RAFT by high crystallinity covalent organic framework. Macromol. Rapid Commun., 2021, 42(20), 2100384. doi:10.1002/marc.202100384http://dx.doi.org/10.1002/marc.202100384
Zhu Y. F.; Zhu D. Y.; Chen Y.; Yan Q. Q.; Liu C. Y.; Ling K. X.; Liu Y. F.; Lee D.; Wu X. W.; Senftle T. P.; Verduzco R. Porphyrin-based donorâ acceptor COFs as efficient and reusable photocatalysts for PET-RAFT polymerization under broad spectrum excitation. Chem. Sci., 2021, 12(48), 16092-16099. doi:10.1039/d1sc05379ehttp://dx.doi.org/10.1039/d1sc05379e
Wang K. X.; Kang X.; Yuan C.; Han X.; Liu Y.; Cui Y. Porous 2D and 3D covalent organic frameworks with dimensionality-dependent photocatalytic activity in promoting radical ring-opening polymerization. Angew. Chem. Int. Ed., 2021, 60(35), 19466-19476. doi:10.1002/anie.202107915http://dx.doi.org/10.1002/anie.202107915
Wang X. Y.; Chen L. J.; Chong S. Y.; Little M. A.; Wu Y. Z.; Zhu W. H.; Clowes R.; Yan Y.; Zwijnenburg M. A.; Sprick R. S.; Cooper A. I. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem., 2018, 10(12), 1180-1189. doi:10.1038/s41557-018-0141-5http://dx.doi.org/10.1038/s41557-018-0141-5
Jin E. Q.; Lan Z. A.; Jiang Q. H.; Geng K. Y.; Li G. S.; Wang X. C.; Jiang D. L. 2D sp2 carbon-conjugated covalent organic frameworks for photocatalytic hydrogen production from water. Chem, 2019, 5(6), 1632-1647. doi:10.1016/j.chempr.2019.04.015http://dx.doi.org/10.1016/j.chempr.2019.04.015
Wang S.; Sun Q.; Chen W.; Tang Y. Q.; Aguila B.; Pan Y. X.; Zheng A. M.; Yang Z. Y.; Wojtas L.; Ma S. Q.; Xiao F. S. Programming covalent organic frameworks for photocatalysis: investigation of chemical and structural variations. Matter, 2020, 2(2), 416-427. doi:10.1016/j.matt.2019.10.026http://dx.doi.org/10.1016/j.matt.2019.10.026
Li W. Q.; Huang X. F.; Zeng T. W.; Liu Y.; Hu W. B.; Yang H.; Zhang Y. B.; Wen K. Thiazolo[5, 4-d]thiazole-based donor-acceptor covalent organic framework for sunlight-driven hydrogen evolution. Angew. Chem. Int. Ed., 2021, 60(4), 1869-1874. doi:10.1002/anie.202014408http://dx.doi.org/10.1002/anie.202014408
Shanmugam S.; Xu J. T.; Boyer C. Exploiting metalloporphyrins for selective living radical polymerization tunable over visible wavelengths. J. Am. Chem. Soc., 2015, 137(28), 9174-9185. doi:10.1021/jacs.5b05274http://dx.doi.org/10.1021/jacs.5b05274
Kandambeth S.; Shinde D. B.; Panda M. K.; Lukose B.; Heine T.; Banerjee R. Enhancement of chemical stability and crystallinity in porphyrin-containing covalent organic frameworks by intramolecular hydrogen bonds. Angew. Chem., Int. Ed., 2013, 52(49), 13052-13056. doi:10.1002/anie.201306775http://dx.doi.org/10.1002/anie.201306775
Chen X.; Addicoat M.; Jin E. Q.; Zhai L. P.; Xu H.; Huang N.; Guo Z. Q.; Liu L. L.; Irle S.; Jiang D. L. Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity. J. Am. Chem. Soc., 2015, 137(9), 3241-3247. doi:10.1021/ja509602chttp://dx.doi.org/10.1021/ja509602c
Ferguson C. J.; Hughes R. J.; Nguyen D.; Pham B. T. T.; Gilbert R. G.; Serelis A. K.; Such C. H.; Hawkett B. S. Ab initio emulsion polymerization by RAFT-controlled self-assembly. Macromolecules, 2005, 38(6), 2191-2204. doi:10.1021/ma048787rhttp://dx.doi.org/10.1021/ma048787r
Moad G.; Chong Y. K.; Postma A.; Rizzardo E.; Thang S. H. Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer, 2005, 46(19), 8458-8468. doi:10.1016/j.polymer.2004.12.061http://dx.doi.org/10.1016/j.polymer.2004.12.061
Tavakoli E.; Kakekhani A.; Kaviani S.; Tan P.; Ghaleni M. M.; Zaeem M. A.; Rappe A. M.; Nejati S. In situ bottom-up synthesis of porphyrin-based covalent organic frameworks. J. Am. Chem. Soc., 2019, 141(50), 19560-19564. doi:10.1021/jacs.9b10787http://dx.doi.org/10.1021/jacs.9b10787
Lu M.; Liu J.; Li Q.; Zhang M.; Liu M.; Wang J. L.; Yuan D. Q.; Lan Y. Q. Rational design of crystalline covalent organic frameworks for efficient CO2 photoreduction with H2O. Angew. Chem. Int. Ed., 2019, 58(36), 12392-12397. doi:10.1002/anie.201906890http://dx.doi.org/10.1002/anie.201906890
Royuela S.; Almarza J.; Mancheño M. J.; Pérez-Flores J. C.; Michel E. G.; Ramos M. M.; Zamora F.; Ocón P.; Segura J. L. Synergistic effect of covalent bonding and physical encapsulation of sulfur in the pores of a microporous COF to improve cycling performance in Li-S batteries. Chem. A Eur. J., 2019, 25(53), 12394-12404. doi:10.1002/chem.201902052http://dx.doi.org/10.1002/chem.201902052
Wan S.; Gándara F.; Asano A.; Furukawa H.; Saeki A.; Dey S. K.; Liao L.; Ambrogio M. W.; Botros Y. Y.; Duan X. F.; Seki S.; Stoddart J. F.; Yaghi O. M. Covalent organic frameworks with high charge carrier mobility. Chem. Mater., 2011, 23(18), 4094-4097. doi:10.1021/cm201140rhttp://dx.doi.org/10.1021/cm201140r
Qian Y. Y.; Li D. D.; Han Y. L.; Jiang H. L. Photocatalytic molecular oxygen activation by regulating excitonic effects in covalent organic frameworks. J. Am. Chem. Soc., 2020, 142(49), 20763-20771. doi:10.1021/jacs.0c09727http://dx.doi.org/10.1021/jacs.0c09727
Bredas, J. L. Mind the gap! Mater. Horiz., 2014, 1(1), 17-19. doi:10.1039/c3mh00098bhttp://dx.doi.org/10.1039/c3mh00098b
Chen X. B.; Shen S. H.; Guo L. J.; Mao S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev., 2010, 110(11), 6503-6570. doi:10.1021/cr1001645http://dx.doi.org/10.1021/cr1001645
Chen R. F.; Wang Y.; Ma Y.; Mal A.; Gao X. Y.; Gao L.; Qiao L. J.; Li X. B.; Wu L. Z.; Wang C. Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution. Nat. Commun., 2021, 12(1), 1354. doi:10.1038/s41467-021-21527-3http://dx.doi.org/10.1038/s41467-021-21527-3
Seal P.; Xu J. T.; de Luca S.; Boyer C.; Smith S. C. Unraveling photocatalytic mechanism and selectivity in PET-RAFT polymerization. Adv. Theory Simul., 2019, 2(6), 1900038. doi:10.1002/adts.201900038http://dx.doi.org/10.1002/adts.201900038
Chen W. B.; Wang L.; Mo D. Z.; He F.; Wen Z. L.; Wu X. J.; Xu H. X.; Chen L. Modulating benzothiadiazole-based covalent organic frameworks via halogenation for enhanced photocatalytic water splitting. Angew. Chem. Int. Ed., 2020, 59(39), 16902-16909. doi:10.1002/anie.202006925http://dx.doi.org/10.1002/anie.202006925
Chu Y. Y.; Huang Z. X.; Liang K.; Guo J. A.; Boyer C.; Xu J. T. A photocatalyst immobilized on fibrous and porous monolithic cellulose for heterogeneous catalysis of controlled radical polymerization. Polym. Chem., 2018, 9(13), 1666-1673. doi:10.1039/c7py01690ehttp://dx.doi.org/10.1039/c7py01690e
0
Views
42
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution