浏览全部资源
扫码关注微信
1.华南师范大学,化学学院,广州 510006
2.华南师范大学,环境理论化学教育部重点实验室,广州 510006
3.华南师范大学,物理学院,广州 510006
Gu-ping He, E-mail: guping.he@m.scnu.edu.cn
Feng-qiang Sun, E-mail: sunfq@scnu.edu.cn
Published:20 December 2023,
Published Online:11 September 2023,
Received:17 May 2023,
Accepted:21 June 2023
扫 描 看 全 文
余家海,何谷平,石益文等.聚苯胺薄膜的溶液表面制备及室温氨气气敏性能[J].高分子学报,2023,54(12):1880-1890.
Yu Jia-hai,He Gu-ping,Shi Yi-wen,et al.Fabrication of Polyaniline Film on Solution Surface and Ammonia Gas Sensing Performance at Room-temperature[J].Acta Polymerica Sinica,2023,54(12):1880-1890.
余家海,何谷平,石益文等.聚苯胺薄膜的溶液表面制备及室温氨气气敏性能[J].高分子学报,2023,54(12):1880-1890. DOI: 10.11777/j.issn1000-3304.2023.23136.
Yu Jia-hai,He Gu-ping,Shi Yi-wen,et al.Fabrication of Polyaniline Film on Solution Surface and Ammonia Gas Sensing Performance at Room-temperature[J].Acta Polymerica Sinica,2023,54(12):1880-1890. DOI: 10.11777/j.issn1000-3304.2023.23136.
提出了一种基于溶液表面的聚苯胺(PANI)薄膜及气敏器件的室温制备方法,以苯胺单体、盐酸和过硫酸铵为原料通过氧化聚合在其水溶液表面直接获得质子化聚苯胺(PANI)薄膜,并利用薄膜的可转移特性构筑气敏器件. 研究发现溶液的pH对PANI致密薄膜的形成至关重要,从而提出了质子化苯胺单体优先在溶液表面聚集和聚合的PANI薄膜形成机制. 该薄膜气敏器件能够对NH
3
进行有效的室温检测,且性能随薄膜聚合温度和聚合时间的变化呈规律性变化,优选制备条件下(pH=0.6,室温18 ℃,聚合60 min)的薄膜其检测下限为10
-6
,响应与NH
3
浓度呈良好的线性关系,并具有良好的重复性、选择性、快速响应和有竞争力的响应值. 该薄膜制备工艺体现了“绿色”制备思想,且薄膜能够大面积制备并具有优异的气敏性能,有望为PANI-基薄膜的制备与室温气体传感器的研究与应用提供一种新的思路.
A room-temperature approach based on the solution surface for the fabrication of polyaniline (PANI) film and gas sensitive devices was introduced in this study. The protonated PANI film was directly produced on the surface of the aqueous solution through oxidation polymerization way
only using the aniline monomer
hydrochloric acid
and ammonium persulfate as raw materials. The gas sensitive device was subsequently built based on the transferable properties of the film. A mechanism for PANI film production was therefore proposed
according to which protonated aniline monomers preferentially aggregate and polymerize on the solution surface. It was discovered that the pH of HCl solution was crucial for the creation of the PANI dense film. The film gas-sensitive device was successful in detecting NH
3
at room temperature
and the response varied regularly with the temperature and duration of film polymerization. The resulting film has a lower detection limit of 0.7 mg/m
3
a good linear response to NH
3
in the range of 0.7‒140.0 mg/m
3
good repeatability
selectivity
rapid response
and competitive response value under optimal fabrication conditions (pH=0.6
room temperature 18 ℃
and plolymerization of 60 min). Obviously
the fabrication process is environmentally friendly
the film can be produced across a vast surface area
and it exhibits outstanding gas sensitivity performance
all of which are anticipated to provide a new route for the fabrication of PANI-based films as well as for the research and application of room-temperature gas sensors.
聚苯胺薄膜溶液表面聚合室温制备室温气敏性能氨气
PANI filmPolymerization on solution surfaceRoom-temperature fabricationRoom-temperature gas-sensing performanceAmmonia gas
Hu Q.; Wang Z. M.; Chang J. Y.; Wan P.; Huang J. H.; Feng L. Design and preparation of hollow NiO sphere-polyaniline composite for NH3 gas sensing at room temperature. Sens. Actuat. B, 2021, 344, 130179. doi:10.1016/j.snb.2021.130179http://dx.doi.org/10.1016/j.snb.2021.130179
Gamal A.; Shaban M.; BinSabt M.; Moussa M.; Ahmed A. M.; Rabia M.; Hamdy H. Facile fabrication of polyaniline/pbs nanocomposite for high-performance supercapacitor application. Nanomaterials, 2022, 12(5), 817. doi:10.3390/nano12050817http://dx.doi.org/10.3390/nano12050817
He B. L.; Tang Q. W.; Wang M.; Chen H. Y.; Yuan S. S. Robust polyaniline-graphene complex counter electrodes for efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces, 2014, 6(11), 8230-8236. doi:10.1021/am500981whttp://dx.doi.org/10.1021/am500981w
Wang C.; Wang L.; Jin J.; Liu J.; Li Y.; Wu M.; Chen L. H.; Wang B. J.; Yang X. Y.; Su B. L. Probing effective photocorrosion inhibition and highly improved photocatalytic hydrogen production on monodisperse PANI@CdS core-shell nanospheres. Appl. Catal. B, 2016, 188, 351-359. doi:10.1016/j.apcatb.2016.02.017http://dx.doi.org/10.1016/j.apcatb.2016.02.017
Zhou H. W.; Xue C. G.; Weis P.; Suzuki Y.; Huang S. L.; Koynov K.; Auernhammer G. K.; Berger R.; Butt H. J.; Wu S. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat. Chem., 2017, 9(2), 145-151. doi:10.1038/nchem.2625http://dx.doi.org/10.1038/nchem.2625
Alharthy R. D.; Saleh A. A novel trace-level ammonia gas sensing based on flexible PANI-CoFe2O4 nanocomposite film at room temperature. Polymers, 2021, 13(18), 3077. doi:10.3390/polym13183077http://dx.doi.org/10.3390/polym13183077
Wang L. L.; Huang H.; Xiao S. H.; Cai D. P.; Liu Y. A.; Liu B.; Wang D. D.; Wang C. X.; Li H.; Wang Y. R.; Li Q. H.; Wang T. H. Enhanced sensitivity and stability of room-temperature NH3 sensors using core-shell CeO2 nanoparticles@cross-linked PANI with p-n heterojunctions. ACS Appl. Mater. Interfaces, 2014, 6(16), 14131-14140. doi:10.1021/am503286hhttp://dx.doi.org/10.1021/am503286h
Li X.; Xu J. L.; Jiang Y. D.; He Z. Z.; Liu B. H.; Xie H. K.; Li H.; Li Z. M.; Wang Y.; Tai H. L. Toward agricultural ammonia volatilization monitoring: a flexible polyaniline/Ti3C2Tx hybrid sensitive films based gas sensor. Sens. Actuat. B, 2020, 316, 128144. doi:10.1016/j.snb.2020.128144http://dx.doi.org/10.1016/j.snb.2020.128144
Liu G. Q.; Zhou Y.; Zhu X. Y.; Wang Y. J.; Ren H.; Wang Y. H.; Gao C.; Guo Y. C. Humidity enhanced ammonia sensing of porous polyaniline/tungsten disulfide nanocomposite film. Sens. Actuat. B, 2020, 323, 128699. doi:10.1016/j.snb.2020.128699http://dx.doi.org/10.1016/j.snb.2020.128699
Chia M. R.; Ahmad I.; Phang S. W. Starch/polyaniline biopolymer film as potential intelligent food packaging with colourimetric ammonia sensor. Polymers, 2022, 14(6), 1122. doi:10.3390/polym14061122http://dx.doi.org/10.3390/polym14061122
Wu G. D.; Du H. S.; Lee D.; Cha Y. L.; Kim W.; Zhang X. Y.; Kim D. J. Polyaniline/graphene-functionalized flexible waste mask sensors for ammonia and volatile sulfur compound monitoring. ACS Appl. Mater. Interfaces, 2022, 14(50), 56056-56064. doi:10.1021/acsami.2c15443http://dx.doi.org/10.1021/acsami.2c15443
Pauly A.; Saad Ali S.; Varenne C.; Brunet J.; Llobet E.; Ndiaye A. L. Phthalocyanines and porphyrins/polyaniline composites (PANI/CuPctBu and PANI/TPPH2) as sensing materials for ammonia detection. Polymers, 2022, 14(5), 891. doi:10.3390/polym14050891http://dx.doi.org/10.3390/polym14050891
Belkhamssa N.; Ksibi M.; Shih A.; Izquierdo R. Fabrication of fast responsive and insensitive-humidity sensor based on polyaniline-WO3-CuCl2 for hydrogen sulfide detection. IEEE Sens. J., 2021, 21(8), 9716-9722. doi:10.1109/jsen.2020.3019240http://dx.doi.org/10.1109/jsen.2020.3019240
Medi B.; Bahramian A.; Nazari V. Synthesis and characterization of conducting polyaniline nanostructured thin films for solar cell applications. JOM, 2021, 73(2), 504-514. doi:10.1007/s11837-020-04361-8http://dx.doi.org/10.1007/s11837-020-04361-8
Harale N. S.; Nagare A. B.; Mali S. S.; Suryawanshi M. P.; Sharma K. K. K.; Rao V. K.; Hong C. K.; Kim J. H.; Patil P. S. Facile synthesis of nanofibrous polyaniline thin films for ammonia gas detection. J. Electron. Mater., 2020, 49(2), 1338-1347. doi:10.1007/s11664-019-07778-3http://dx.doi.org/10.1007/s11664-019-07778-3
Khalifa M.; Anandhan S. Highly sensitive and wearable NO2 gas sensor based on PVDF nanofabric containing embedded polyaniline/g-C3N4 nanosheet composites. Nanotechnology, 2021, 32, 485504.
Yang P. Y.; Lv D. W.; Shen W. F.; Wu T. Y.; Yang Y.; Zhao Y.; Tan R. Q.; Song W. J. Porous flexible polyaniline/polyvinylidene fluoride composite film for trace-level NH3 detection at room temperature. Mater. Lett., 2020, 271, 127798. doi:10.1016/j.matlet.2020.127798http://dx.doi.org/10.1016/j.matlet.2020.127798
Wu T. Y.; Lv D. W.; Shen W. F.; Song W. J.; Tan R. Q. Trace-level ammonia detection at room temperature based on porous flexible polyaniline/polyvinylidene fluoride sensing film with carbon nanotube additives. Sens. Actuat. B, 2020, 316, 128198. doi:10.1016/j.snb.2020.128198http://dx.doi.org/10.1016/j.snb.2020.128198
Tohidi T.; Tohidi S.; Mohammad-Rezaei R. Fabrication of flexible polyaniline@ZnO hollow sphere hybrid films for high-performance NH3 sensors. J. Mater. Sci., 2020, 31(21), 19119-19129. doi:10.1007/s10854-020-04448-7http://dx.doi.org/10.1007/s10854-020-04448-7
Sharma A.; Rawal I.; Rajpal A.; Khokhar A.; Kumar V.; Goyal P. K. Highly sensitive and selective room temperature ammonia sensor based on polyaniline thin film: in situ dip-coating polymerization. J. Mater. Sci., 2022, 33(17), 14071-14085. doi:10.1007/s10854-022-08338-yhttp://dx.doi.org/10.1007/s10854-022-08338-y
Liu A.; Wang C. L.; Yang X. L.; Liu F. M.; Li S. Q.; Wang J.; You R.; Yang Z. J.; He J. M.; Jiang L.; Yan X.; Sun P.; Lu G. Y. Polyaniline @ porous nanosphere SnO2/Zn2SnO4 nanohybrid for selective room temperature flexible NH3 sensor. Sens. Actuat. B, 2020, 317, 128218. doi:10.1016/j.snb.2020.128218http://dx.doi.org/10.1016/j.snb.2020.128218
Lisboa F.; Neiva E.; Bergamini M.; Marcolino L. Jr, Zarbin, A. Evaluation of carbon nanotubes/polyaniline thin films for development of electrochemical sensors. J. Braz. Chem. Soc., 2020, 31(6), 1093-1100.
Mirmohseni A.; Azizi M.; Dorraji M. S. S. Cationic graphene oxide nanosheets intercalated with polyaniline nanofibers: a promising candidate for simultaneous anticorrosion, antistatic, and antibacterial applications. Prog. Org. Coat., 2020, 139, 105419. doi:10.1016/j.porgcoat.2019.105419http://dx.doi.org/10.1016/j.porgcoat.2019.105419
Salvatierra R. V.; Cava C. E.; Roman L. S.; Zarbin A. J. G. ITO-free and flexible organic photovoltaic device based on high transparent and conductive polyaniline/carbon nanotube thin films. Adv. Funct. Mater., 2013, 23(12), 1490-1499. doi:10.1002/adfm.201201878http://dx.doi.org/10.1002/adfm.201201878
Zhu C. H.; Xu Y. F.; Zhou T. T.; Liu L. C.; Chen Q. D.; Gao B. R.; Zhang T. Self-assembly polyaniline films for the high-performance ammonia gas sensor. Sens. Actuat. B, 2022, 365, 131928. doi:10.1016/j.snb.2022.131928http://dx.doi.org/10.1016/j.snb.2022.131928
Xu S. P.; Sun F. Q.; Pan Z. Z.; Huang C. W.; Yang S. M.; Long J. F.; Chen Y. Reduced graphene oxide-based ordered macroporous films on a curved surface: general fabrication and application in gas sensors. ACS Appl. Mater. Interfaces, 2016, 8(5), 3428-3437. doi:10.1021/acsami.5b11607http://dx.doi.org/10.1021/acsami.5b11607
Xu S. P.; Sun F. Q.; Gu F. L.; Zuo Y. B.; Zhang L. H.; Fan C. F.; Yang S. M.; Li W. S. Photochemistry-based method for the fabrication of SnO2 monolayer ordered porous films with size-tunable surface pores for direct application in resistive-type gas sensor. ACS Appl. Mater. Interfaces, 2014, 6(2), 1251-1257. doi:10.1021/am4050844http://dx.doi.org/10.1021/am4050844
Sun F.; Cai W.; Li Y.; Jia L.; Lu F. Direct growth of mono- and multilayer nanostructured porous films on curved surfaces and their application as gas sensors. Adv. Mater., 2005, 17(23), 2872-2877. doi:10.1002/adma.200500936http://dx.doi.org/10.1002/adma.200500936
Beygisangchin M.; Abdul Rashid S.; Shafie S.; Sadrolhosseini A. R.; Lim H. N. Preparations, properties, and applications of polyaniline and polyaniline thin films—a review. Polymers, 2021, 13(12), 2003. doi:10.3390/polym13122003http://dx.doi.org/10.3390/polym13122003
Jangid N. K.; Jadoun S.; Kaur N. A review on high-throughput synthesis, deposition of thin films and properties of polyaniline. Eur. Polym. J., 2020, 125(15), 109485. doi:10.1016/j.eurpolymj.2020.109485http://dx.doi.org/10.1016/j.eurpolymj.2020.109485
Zhang T.; Qi H. Y.; Liao Z. Q.; Horev Y. D.; Panes-Ruiz L. A.; St Petkov P.; Zhang Z.; Shivhare R.; Zhang P. P.; Liu K. J.; Bezugly V.; Liu S. H.; Zheng Z. K.; Mannsfeld S.; Heine T.; Cuniberti G.; Haick H.; Zschech E.; Kaiser U.; Dong R. H.; Feng X. L. Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances. Nat. Commun., 2019, 10, 4225. doi:10.1038/s41467-019-11921-3http://dx.doi.org/10.1038/s41467-019-11921-3
Seki T.; Yu X. Q.; Zhang P.; Yu C. C.; Liu K. J.; Gunkel L.; Dong R. H.; Nagata Y.; Feng X. L.; Bonn M. Real-time study of on-water chemistry: Surfactant monolayer-assisted growth of a crystalline quasi-2D polymer. Chem, 2021, 7(10), 2758-2770. doi:10.1016/j.chempr.2021.07.016http://dx.doi.org/10.1016/j.chempr.2021.07.016
Ince A.; Bayramoglu G.; Karagoz B.; Altintas B.; Bicak N.; Arica M. Y. A method for fabrication of polyaniline coated polymer microspheres and its application for cellulase immobilization. Chem. Eng. J., 2012, 189-190, 404-412. doi:10.1016/j.cej.2012.02.048http://dx.doi.org/10.1016/j.cej.2012.02.048
Lakhdari D.; Guittoum A.; Benbrahim N.; Belgherbi O.; Berkani M.; Seid L.; Khtar S. A.; Saeed M. A.; Lakhdari N. Elaboration and characterization of Ni (NPs)-PANI hybrid material by electrodeposition for non-enzymatic glucose sensing. J. Electron. Mater., 2021, 50(9), 5250-5258. doi:10.1007/s11664-021-09031-2http://dx.doi.org/10.1007/s11664-021-09031-2
Gautam S. K.; Panda S. Effect of moisture and molecular weight of polyaniline on H2S sensing characteristics. Sens. Actuat. B, 2021, 344, 130323. doi:10.1016/j.snb.2021.130323http://dx.doi.org/10.1016/j.snb.2021.130323
鞠洪岩, 付大光, 詹磊, 李季, 王献红, 王佛松. 湿度对聚苯胺氨气传感器性能影响的研究. 高分子学报, 2014, (1), 156-163. doi:10.3724/SP.J.1105.2014.13378http://dx.doi.org/10.3724/SP.J.1105.2014.13378
Khanapure R. G.; Ghanwat A. A.; Awate S. K.; Uttam S. G.; Kavade R. J.; Salunkhe P. H.; Patil S. V. Room-temperature ammonia gas sensor based on carboxylic acid-doped polyaniline. Polym. Bull., 2023, 80(3), 3183-3195. doi:10.1007/s00289-022-04215-0http://dx.doi.org/10.1007/s00289-022-04215-0
Zhao J. L.; Shen W. F.; Lv D. W.; Zhang J.; Wang Y. H.; Liang T. X.; Song W. J. Flexible room temperature sensor with modulation of polyaniline interfacial polymerization by CTAB for ppb-level ammonia detection. Mater. Lett., 2023, 333, 133690. doi:10.1016/j.matlet.2022.133690http://dx.doi.org/10.1016/j.matlet.2022.133690
Li B.; Li Y.; Ma P. H. Synthesis of H2SO4-doped polyaniline materials and behavior of enhancing gas sensing properties. J. Mater. Sci., 2022, 33(23), 18673-18685. doi:10.1007/s10854-022-08716-6http://dx.doi.org/10.1007/s10854-022-08716-6
Sengupta P. P.; Kar P.; Adhikari B. Influence of dopant in the synthesis, characteristics and ammonia sensing behavior of processable polyaniline. Thin Solid Films, 2009, 517(13), 3770-3775. doi:10.1016/j.tsf.2008.12.049http://dx.doi.org/10.1016/j.tsf.2008.12.049
0
Views
27
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution