浏览全部资源
扫码关注微信
苏州市大分子设计与精密合成重点实验室 苏州大学材料与化学化工学部 苏州 215123
Xiao-fang Chen, E-mail: xfchen75@suda.edu.cn
Published:20 October 2023,
Published Online:30 August 2023,
Received:19 May 2023,
Accepted:12 July 2023
扫 描 看 全 文
魏文静,裴基玮,罗娟等.含非常规侧链结构的液晶聚合物的合成及其超分子柱状相与柔性间隔基的关系[J].高分子学报,2023,54(10):1568-1578.
Wei Wen-jing,Pei Ji-wei,Luo Juan,et al.Synthesis of Liquid Crystalline Polymer Containing Unconventional Side Chain and the Effect of Flexible Spacer on Supramolecular Columnar Phase Formation[J].ACTA POLYMERICA SINICA,2023,54(10):1568-1578.
魏文静,裴基玮,罗娟等.含非常规侧链结构的液晶聚合物的合成及其超分子柱状相与柔性间隔基的关系[J].高分子学报,2023,54(10):1568-1578. DOI: 10.11777/j.issn1000-3304.2023.23137.
Wei Wen-jing,Pei Ji-wei,Luo Juan,et al.Synthesis of Liquid Crystalline Polymer Containing Unconventional Side Chain and the Effect of Flexible Spacer on Supramolecular Columnar Phase Formation[J].ACTA POLYMERICA SINICA,2023,54(10):1568-1578. DOI: 10.11777/j.issn1000-3304.2023.23137.
设计合成了一类具有非常规侧链结构的聚苯乙烯液晶聚合物PS-
n
(
n
=2
6
8
10
12),并研究了该类聚合物形成的超分子柱状液晶相与柔性间隔基之间的关系. 所有聚合物表现出稳定的双向性液晶性质. 当柔性间隔基较短(
n
≤6)时,聚合物形成超分子平行四边形柱状相(Col
ob
)有序结构,该结构源于侧链中双液晶基元的取代位置引起的侧链层状堆积结构的周期性波动形成的二维有序堆积,且随着温度升高有序度有所增加. 随着间隔基长度增加(
n
≥8),聚合物可形成2种不同晶胞参数的Col
ob
相,其中在室温附近的Col
ob
(I)相表现出波动层状相的特点,随着温度升高,聚合物进入有序度更高的Col
ob
(Ⅱ)相,表现出高温组装的特殊性质. 所有聚合物在继续升高温度后从Col
ob
相进入层状相,最后进入各向同性相. 由于柱子在聚合物薄膜内平行排列,PS-
n
薄膜表面可形成条纹状图案,在剪切力诱导下条纹图案可沿剪切方向发生宏观取向.
A class of polystyrene liquid crystalline polymer PS-
n
(
n
=2
6
8
10
12) with unconventional side chain structure was designed and synthesized. The influence of flexible spacer on the supramolecular columnar liquid crystalline phase formation was systematically studied. All polymers exhibit enantiotropic thermotropic liquid crystalline phase behaviour. When the flexible spacer is short (
n
≤6)
the polymer forms a two-dimensional supramolecular ordered oblique columnar (Col
ob
) phase structure
which results from the periodic fluctuation of the one-dimensional layered structure caused by the ortho substitution of two biphenyl mesogens per side chain. As the spacer length increases (
n
≥8)
the polymer can exhibit two Col
ob
phases with different lattice parameters at different temperatures. The Col
ob
(I) phase with relatively small lattice parameter appeared near room temperature shows a characteristic undulated lamellar structure with oblique symmetry. With the increase of temperature
the polymer enters a higher ordered Col
ob
(Ⅱ) phase with larger lattice parameter
showing the specific self-assembly behaviour at high temperature. When further increasing temperature
all polymers exhibit Col
ob
to lamellar phase transition before entering isotropic state. The existence of long spacer length tends to promote the self-organization behaviour of side chain
which makes the appearance of highly ordered mesophase. Due to the parallel orientation of columnar structure
the fingerprint-like morphology can be found on the surface of thermal annealed PS-
n
thin film
and the macroscopic orientation can occur along the shear direction under shear induction.
液晶聚合物超分子柱状相聚合物薄膜小角X射线散射
Liquid crystalline polymerSupramolecular columnar phasePolymer thin filmSmall angle X-ray scattering
Matyjaszewski K. Macromolecular engineering: from rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties. Prog. Polym. Sci., 2005, 30(8-9), 858-875. doi:10.1016/j.progpolymsci.2005.06.004http://dx.doi.org/10.1016/j.progpolymsci.2005.06.004
Lutz J. F.; Lehn J. M.; Meijer E. W.; Matyjaszewski K. From precision polymers to complex materials and systems. Nat. Rev. Mater., 2016, 1, 16024. doi:10.1038/natrevmats.2016.24http://dx.doi.org/10.1038/natrevmats.2016.24
Gallot B. Comb-like and block liquid crystalline polymers for biological applications. Prog. Polym. Sci., 1996, 21(6), 1035-1088. doi:10.1016/s0079-6700(96)00010-xhttp://dx.doi.org/10.1016/s0079-6700(96)00010-x
Fleischmann E. K.; Zentel R. Liquid-crystalline ordering as a concept in materials science: from semiconductors to stimuli-responsive devices. Angew. Chem. Int. Ed., 2013, 52(34), 8810-8827. doi:10.1002/anie.201300371http://dx.doi.org/10.1002/anie.201300371
Kato T.; Uchida J.; Ichikawa T.; Soberats B. Functional liquid-crystalline polymers and supramolecular liquid crystals. Polym. J., 2018, 50(1), 149-166. doi:10.1038/pj.2017.55http://dx.doi.org/10.1038/pj.2017.55
Lee C.; Osuji C. O. 100th anniversary of macromolecular science viewpoint: opportunities for liquid crystal polymers in nanopatterning and beyond. ACS Macro Lett., 2021, 10(7), 945-957. doi:10.1021/acsmacrolett.1c00350http://dx.doi.org/10.1021/acsmacrolett.1c00350
Finkelmann H.; Ringsdorf H.; Wendorff J. H. Model considerations and examples of enantiotropic liquid—crystalline polymers—polyreactions in ordered systems, 14. Die Makromol. Chem., 1978, 179(1), 273-276. doi:10.1002/macp.1978.021790129http://dx.doi.org/10.1002/macp.1978.021790129
Zhou Q. F.; Li H. M.; Feng X. D. Synthesis of liquid-crystalline polyacrylates with laterally substituted mesogens. Macromolecules, 1987, 20(1), 233-234. doi:10.1021/ma00167a042http://dx.doi.org/10.1021/ma00167a042
Zhou Q. F.; Zhu X. L.; Wen Z. Q. Liquid-crystalline side-chain polymers without flexible spacer. Macromolecules, 1989, 22(1), 491-493. doi:10.1021/ma00191a094http://dx.doi.org/10.1021/ma00191a094
Chen X. F.; Shen Z. H.; Wan X. H.; Fan X. H.; Chen E. Q.; Ma Y. G.; Zhou Q. F. Mesogen-jacketed liquid crystalline polymers. Chem. Soc. Rev., 2010, 39(8), 3072-3101. doi:10.1039/b814540ghttp://dx.doi.org/10.1039/b814540g
Percec V.; Ahn C. H.; Ungar G.; Yeardley D. J. P.; Möller M.; Sheiko S. S. Controlling polymer shape through the self-assembly of dendritic side-groups. Nature, 1998, 391(6663), 161-164. doi:10.1038/34384http://dx.doi.org/10.1038/34384
Frauenrath H. Dendronized polymers—building a new bridge from molecules to nanoscopic objects. Prog. Polym. Sci., 2005, 30(3-4), 325-384. doi:10.1016/j.progpolymsci.2005.01.011http://dx.doi.org/10.1016/j.progpolymsci.2005.01.011
Rosen B. M.; Wilson C. J.; Wilson D. A.; Peterca M.; Imam M. R.; Percec V. Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem. Rev., 2009, 109(11), 6275-6540. doi:10.1021/cr900157qhttp://dx.doi.org/10.1021/cr900157q
Percec V. From synthetic macromolecules to biological-like complex systems. Adv. Polym. Sci., 2013, 261, 173-197. doi:10.1007/12_2013_273http://dx.doi.org/10.1007/12_2013_273
Xu Y. S.; Shi D.; Gu J.; Lei Z.; Xie H. L.; Zhao T. P.; Yang S.; Chen E. Q. Synthesis and self-organization of azobenzene containing hemiphasmidic side-chain liquid-crystalline polymers with different spacer lengths. Polym. Chem., 2016, 7(2), 462-473. doi:10.1039/c5py01508ahttp://dx.doi.org/10.1039/c5py01508a
Zhao R. Y.; Zhao T. P.; Jiang X. Q.; Liu X.; Shi D.; Liu C. Y.; Yang S.; Chen E. Q. Thermoplastic high strain multishape memory polymer: side-chain polynorbornene with columnar liquid crystalline phase. Adv. Mater., 2017, 29(12), 1605908. doi:10.1002/adma.201605908http://dx.doi.org/10.1002/adma.201605908
Jiang X. Q.; Zhao R. Y.; Chang W. Y.; Yin D. X.; Guo Y. C.; Wang W.; Liang D. H.; Yang S. A.; Shi A. C.; Chen E. Q. Highly ordered sub-10 nm patterns based on multichain columns of side-chain liquid crystalline polymers. Macromolecules, 2019, 52(13), 5033-5041. doi:10.1021/acs.macromol.9b00910http://dx.doi.org/10.1021/acs.macromol.9b00910
Hosono N.; Kajitani T.; Fukushima T.; Ito K.; Sasaki S.; Takata M.; Aida T. Large-area three-dimensional molecular ordering of a polymer brush by one-step processing. Science, 2010, 330(6005), 808-811. doi:10.1126/science.1195302http://dx.doi.org/10.1126/science.1195302
Chen Z.; Chan Y. T.; Miyajima D.; Kajitani T.; Kosaka A.; Fukushima T.; Lobez J. M.; Aida T. A design principle of polymers processable into 2D homeotropic order. Nat. Commun., 2016, 7, 13640. doi:10.1038/ncomms13640http://dx.doi.org/10.1038/ncomms13640
Xie H. L.; Jie C. K.; Yu Z. Q.; Liu X. B.; Zhang H. L.; Shen Z. H.; Chen E. Q.; Zhou Q. F. Hierarchical supramolecular ordering with biaxial orientation of a combined main-chain/side-chain liquid-crystalline polymer obtained from radical polymerization of 2-vinylterephthalate. J. Am. Chem. Soc., 2010, 132(23), 8071-8080. doi:10.1021/ja101184uhttp://dx.doi.org/10.1021/ja101184u
Kim D. Y.; Kang D. G.; Shin S.; Choi T. L.; Jeong K. U. Hierarchical superstructures of norbornene-based polymers depending on dendronized side-chains. Polym. Chem., 2016, 7(33), 5304-5311. doi:10.1039/c6py01286hhttp://dx.doi.org/10.1039/c6py01286h
Kim D. Y.; Shin S.; Yoon W. J.; Choi Y. J.; Hwang J. K.; Kim J. S.; Lee C. R.; Choi T. L.; Jeong K. U. From smart denpols to remote-controllable actuators: Hierarchical superstructures of azobenzene-based polynorbornenes. Adv. Funct. Mater., 2017, 27(18), 1606294. doi:10.1002/adfm.201606294http://dx.doi.org/10.1002/adfm.201606294
Tschierske C. Liquid crystal engineering-new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. Chem. Soc. Rev., 2007, 36(12), 1930. doi:10.1039/b615517khttp://dx.doi.org/10.1039/b615517k
Tschierske C. Microsegregation: from basic concepts to complexity in liquid crystal self-assembly. Isr. J. Chem., 2012, 52(10), 935-959. doi:10.1002/ijch.201200053http://dx.doi.org/10.1002/ijch.201200053
Tschierske C. Development of structural complexity by liquid-crystal self-assembly. Angew. Chem. Int. Ed., 2013, 52(34), 8828-8878. doi:10.1002/anie.201300872http://dx.doi.org/10.1002/anie.201300872
Ma S. H.; Cai Y. C.; Tu Y. Y.; Guan Y.; Chen X. F. Synthesis and mesomorphic properties of side-chain polynorbornenes containing mono-, di- and tri-calamitic mesogenic pendant groups. Polym. Chem., 2016, 7(21), 3520-3529. doi:10.1039/c6py00632ahttp://dx.doi.org/10.1039/c6py00632a
Tu Y. Y.; Wu Y. J.; Pei J. W.; Qu W. T.; Lu H. J.; Liu F.; Chen X. F. Synthesis and supramolecular liquid crystalline structure modulation of side-chain polynorbornenes with asymmetrical substituent mesogenic groups. Polym. Chem., 2019, 10(42), 5751-5759. doi:10.1039/c9py01197hhttp://dx.doi.org/10.1039/c9py01197h
Pei J. W.; Wei W. J.; Li B. A.; Huang J. D.; Chen X. F. Composition-dependent phase transformation in side-chain liquid crystalline copolymers with mesogenic groups at different substituent positions. Soft Matter, 2021, 17(17), 4594-4603. doi:10.1039/d1sm00161bhttp://dx.doi.org/10.1039/d1sm00161b
0
Views
32
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution