Published:20 June 2023,
Published Online:02 February 2023,
Received:22 November 2022,
Accepted:30 December 2022
Scan for full text
Cite this article
In recent years, immunotherapy, as a new therapeutic method, received extensive attention in the field of tumor therapy due to the exciting therapeutic effects on many types of malignant tumors. Though the development of immunotherapy is in full swing, immunotherapy still faces many challenges, such as low immune response rate, immune related adverse events. Using drug delivery materials for targeted delivery immune agents is an effective means to solve the current problems of immunodrugs and further improve the therapeutic index. Compared to chemotherapeutic agents, the target, mechanism and mode of action of immune agents are different, which poses a new challenge to the design of drug delivery materials. In this paper, we summarized the challenges in the process of immunodrugs delivery, and introduced the design ideas and representative results of polymeric materials for immune drug delivery to the tumor and lymph nodes. For the delivery of immune drug to tumor, we firstly showed 3 types of nanoparticles——polypeptide-dexamethasone conjugate, aspirin polymeric prodrug and nano-assembly of bile acid receptor modulators for releasing the immunosuppression in the tumor site. Then we introduced the poly(lactic acid) block polyethyleneimine CpG loaded nanoparticles combination with oxaliplatin for inducing the immunogenic death and further enhancing the in situ antitumor immunity. Finally, we present the strategy of hierarchical delivery of immune agents to tumors and lymph nodes using supramolecular assembled programmable nanomedicine. Furthermore, the influence of drug release mode on the immune stimulation effect was explored by the implants crosslinked by poly(ethylene glycol) and polysaccharide. For the delivery of immune drug to lymph node, pathogen-mimicking polymeric nanoparticles were used for realizing the efficient reflux of antigen and adjuvant to lymph nodes, and polyethyleneimine derivatives with stimulator of interferon genes (STING) adjuvant function were synthesized for achieving the spatiotemporal synergy between activating antigen presenting cells and promoting antigen cross presentation. Finally, we forwarded the problems that need to be solved and the future research direction in the field of immunodrug delivery.
介绍了免疫药物体内传输所面临的困难,并以作者课题组工作为基础,介绍了多种类型的高分子载体材料——天然多糖、聚氨基酸、聚噁唑啉、聚乙烯亚胺等用于免疫药物向肿瘤与淋巴结的递送及代表性结果.
Biomedical polymers;
Drug delivery;
Tumor therapy;
Immunotherapy
癌症是全球最大的公共健康问题之一. 2020年全球新发癌症病例1929万例,死亡996万例;中国新发癌症病例457万例,死亡300万例. 癌症研究任重道远. 癌症的主要治疗手段包括手术治疗、化疗、放疗和靶向治疗[
利用药物传输材料传输免疫治疗药物,是解决当前免疫治疗困境、实现免疫治疗进一步突破的重要手段[
围绕上述关键问题,本课题组以提升免疫治疗药物的疗效为目标,以高分子材料的分子结构调控和智能结构设计为主要手段,围绕肿瘤免疫治疗中的肿瘤和淋巴结两个关键目标,开展了较为系统的研究工作(
Fig.1 Functional drug delivery carrier design for spatiotemporal controllable drug delivery in vivo and eliciting anti-cancer immune responses.
肿瘤组织是开展肿瘤免疫治疗的核心战场,在淋巴结内产生的免疫杀伤细胞到达肿瘤部位,并杀死肿瘤细胞,是实施肿瘤免疫治疗的最终目的. 然而,由肿瘤细胞、基质细胞、免疫细胞和各种细胞因子构成的复杂肿瘤免疫抑制微环境往往构成了免疫细胞杀伤过程中的不利因素,这种免疫抑制微环境不仅帮助肿瘤的生长,并且抑制免疫细胞发挥杀伤作用[
1.1.1 靶向调节肿瘤炎性微环境
促瘤炎症是肿瘤的十大基本特征之一[
首先,DEX是一类非常有效的COX-2抑制剂,但是作为甾体类抗炎药物,DEX大剂量给予的副作用大,限制了其用于肿瘤治疗[
Fig. 2 Polymeric prodrug for tumor microenvironment modulation and tumor therapy. (a) Reduction and pH dual-responsive polypeptide-dexamethasone conjugate (L-SS-DEX) and the release mechanism. (b) In vitro release profiles of L-SS-DEX; (c) ROS-responsive aspirin polymeric prodrug (P3C-Asp) and the release mechanism (Reprinted with permission from Ref.[
阿司匹林作为一种经典的非甾体类抗炎药,同样可以抑制COX-2的活性,降低PGE2的产生[
1.1.2 靶向调控肠道菌代谢产物
肠癌和肝癌作为消化系统肿瘤的重要类型,其发生和进展与肠道细菌存在直接关联. 近年来的研究发现,利用抗生素等清除肠道细菌能够延缓肠癌及肝癌肿瘤的生长,并显著改善肠癌及肝癌的免疫抑制微环境[
首先,结直肠癌由于其特殊位置环境,与肠道细菌的交互作用关系最为密切. 我们鉴定出革兰氏阴性菌细胞外壁的重要成分脂多糖(LPS)在结肠癌肿瘤组织中大量存在,并证实它是干扰PD-L1抗体治疗结肠癌肿瘤疗效的重要原因之一.而使用多黏菌素B清除肠道中的革兰氏阴性菌或使用TAK-242阻断LPS的重要受体Toll样受体4后均能够缓解结肠癌的免疫抑制微环境,并提高结肠癌肿瘤内的T细胞浸润水平. 进一步,我们设计了结肠癌靶向纳米基因传输颗粒,负载靶向LPS融合蛋白的基因编码序列,在结肠癌肿瘤组织内选择性表达LPS融合蛋白以诱捕脂多糖. 这一治疗方式有效缓解了肠道细菌LPS引起的免疫抑制微环境,并增强了PD-L1抗体在结肠癌肿瘤上的治疗效果[
此外,最近的研究证实,肝癌患者的肠道菌群失调,以革兰氏阳性细菌增多导致初级胆汁酸到次级胆汁酸转化增多为主要特征;而在小鼠肝癌模型中,通过抗生素治疗可以调节初级胆汁酸和次级胆汁酸的平衡,起到显著控制肝癌进展的效果[
Fig. 3 Nano-delivery of bile acid receptor modulators for liver cancer immunotherapy. (a) The preparation of OCA-NPs and 5β-CA-NPs by self-assembly of OCA and 5β-CA with PMBEOx-NH2 via a thin film method; (b) The sizes of OCA-NPs and 5β-CA-NPs; (c) Plasma drug concentration-time profiles in female SD rats treated with free OCA (p.o.) and OCA-NPs (i.v.); (d) The biodistribution of free OCA (p.o.) and OCA-NPs (i.v.) in H22 orthotopic tumor-bearing mice; (e) The therapeutic effect of orthotopic hepatoma after receiving various treatments (Reprinted with permission from Ref.[
1.2.1 原位激活抗肿瘤免疫响应
通过在瘤内注射免疫激动剂,原位激活肿瘤内的抗肿瘤免疫响应,是目前研究较多的一种免疫治疗策略,也被称为原位肿瘤疫苗[
Fig. 4 Schematic illustration of preparation and synergistic antitumor mechanism of TIENs. PLA-PEI self-assembled into core-shell nanoparticle (NP) and CpG was loaded by electrostatic interaction to form the TIENs. Systemically administered chemo agents could induce cancer cell death and trigger tumor antigen release. TIENs could (1) capture tumor antigens and promote antigen engulfment by DCs; (2) stimulate DC activation through the recognition of TLR9; (3) help antigen escape from endosome and antigen cross-presentation to the cytosolic MHC-I molecules, thus promoting subsequent CTLs priming to destroy tumor cells. (Reprinted with permission from Ref.[
1.2.2 向肿瘤和淋巴结的分级协同传输
肿瘤的免疫激活过程是一个从抗原释放、抗原捕获、树突细胞活化、抗原呈递到效应细胞产生的多步过程,涉及肿瘤组织和肿瘤引流淋巴结等多个器官位点. 因此,设计载体材料向肿瘤组织和肿瘤引流淋巴结分别传输药物,协同增强肿瘤免疫响应的多步过程,可能能够大幅提升体内激活抗肿瘤免疫响应的效率. 然而,肿瘤组织和肿瘤引流淋巴结对于药物种类及载体特性具有不同的需求和倾向性,同时向肿瘤组织和肿瘤引流淋巴结协同传输不同药物是药物载体设计的难题. 为了解决这一问题,本课题组提出了免疫药物的分级传输策略,设计纳米组装体材料在到达肿瘤部位后发生智能转变,实现多药物向肿瘤和淋巴结多位点的协同传输. 为了制备这一复杂的功能结构,我们利用超分子作用将不同的功能模块组装起来,得到最终的可编程免疫激活纳米药物(programmable immune activation nanomedicine, PIAN). 首先,利用聚(N-2-羟乙基)-L-天冬酰胺(PHEA)键合β-环糊精(β-CD-NH2)和四价铂前药(Pt(IV)-COOH)制备纳米内核(PPCD),之后通过活性氧(ROS)敏感的缩硫酮连接键在聚乙二醇和负载有CpG的聚酰胺(PAMAM)末端修饰金刚烷(Ad)分子,最后利用金刚烷与环糊精之间的主客体相互作用将PEG和CpG/PAMAM装配在纳米内核的表面,得到最终的纳米组装体PIAN. 通过静脉注射方式将PIAN注射到体内,在到达肿瘤部位后,PIAN中的铂类药物杀死肿瘤细胞释放肿瘤抗原,而小粒径的CpG/PAMAM在肿瘤组织内的高ROS环境下断裂释放并捕获肿瘤抗原,利用小粒径优势回流到肿瘤引流淋巴结,促进肿瘤抗原内化进入树突状细胞,增强树突细胞活化,并随后刺激免疫效应T细胞的产生(
Fig. 5 Schematic illustration of the programmable immune activation nanomedicine (PIAN) for immune activation and tumor inhibition. PIAN is fabricated through a one-step supramolecular assembly process via β-CD/Ad host-guest interactions among various components. Systemically administered PIAN accumulates in the tumor tissue and undergoes dissociation to release PPCD and CpG/PAMAM. PPCD induces tumor cell death and antigen release, while CpG/PAMAM captures antigens and promotes antigen uptake and DC activation. Finally, the activated DC primes effector T cells for further tumor cell killing. (Reprinted with permission from Ref.[
通过纳米材料的传输实现了免疫药物在肿瘤部位的有效富集,高效地增强了肿瘤部位的免疫响应. 然而,免疫药物在到达肿瘤部位后往往需要药物低浓度长时间的刺激才能最大限度地发挥免疫刺激作用. 凝胶作为一种具有良好的生物相容性、可调的机械性能的局部药物缓释载体,在免疫药物递送方面具有独特优势[
首先,我们利用四臂氨基聚乙二醇与氧化葡聚糖的交联作用来制备凝胶担载雷西莫特(R848)和OX40抗体(aOX40),并将其冻干成固定形状的支架(冻干后的植入件不影响药物的释放以及药效的发挥,其中aOX40通过冻干后加入的方式负载在植入件内),方便手术植入使用(
Fig. 6 Biopolymer immune implant for localized tumor immunotherapy. (a) The preparation of the biopolymer immune implant; (b) In vitro degradation test of the implant; (c) The release profiles of R848 from the implant; (d) The release profiles of IgG from the implant. (e) Post-surgery therapeutic results of CT26 tumor and the survival time of the mice after various treatments; (f) Distal tumor results in the bilateral tumor therapy experiment (Reprinted with permission from Ref.[
进一步,该凝胶缓释材料被用于化疗药物阿霉素和免疫检查点抑制剂PD-1抗体的共担载,以及奥沙利铂和免疫检查点激动剂R848的共担载,其同样表现出长时稳定缓释特性,在用于小鼠腹腔转移恶性肿瘤的治疗中也取得了出色的治疗效果[
淋巴结是免疫响应发生的核心位点,因此,以淋巴结为目标,向淋巴结内传输抗原和佐剂,激活特异性抗肿瘤免疫响应的肿瘤疫苗,成为免疫治疗研究的另一大热点. 特别是纳米肿瘤疫苗因为其独特的优势成为治疗性肿瘤疫苗发展的重点. 纳米肿瘤疫苗的主要优势有:(1)使用纳米载体担载佐剂和抗原能够防止其降解,避免佐剂和抗原在被抗原提呈细胞吞噬之前就过早地弥散在组织中;(2)抗原和佐剂的共传输能够有效增强抗肿瘤免疫效果而避免引起免疫耐受;(3)纳米尺度的粒子具有天然的淋巴结靶向性且容易被抗原提呈细胞摄取,且这一优势能够被合适的表面修饰进一步加强. 尽管理论上极具潜力,但是现在的纳米肿瘤疫苗的治疗效果仍然不尽如人意,这也极大地限制了肿瘤疫苗向临床的应用推广.
适应性免疫应答主要是在次级淋巴器官中发生,因此疫苗在淋巴结内的有效聚集是肿瘤疫苗引起强效抗肿瘤免疫响应的前提. 研究证明,纳米粒子的尺寸是影响其淋巴结回流能力的重要因素. 尺寸在20~200 nm的纳米粒子能够通过被动扩散方式快速回流到淋巴结;而尺寸大于500 nm的粒子则主要通过转移性淋巴细胞的主动转运作用到达淋巴结[
首先,为了提升纳米疫苗向淋巴结的回流能力,我们受病原体易于向淋巴结回流及被抗原提呈细胞摄取的启发,提出利用病原体来源的甘露聚糖来修饰纳米颗粒疫苗,利用甘露聚糖介导的补体依赖转运作用及与抗原提呈细胞表面甘露糖受体的相互作用来促进纳米颗粒疫苗向淋巴结的聚集. 鉴于PEI材料表面具有大量的胺基,对于电负性的抗原具有良好的担载效率,以PLA-PEI自组装形成的阳离子纳米粒子作为内核,通过静电作用吸附TLR9激动剂CpG以及肿瘤抗原蛋白;之后利用氨基与醛基形成的席夫碱键将氧化甘露聚糖修饰在纳米颗粒的表面(
Fig. 7 Mannan-decorated pathogen-like polymeric nanoparticles as nanovaccine carriers (MPVax-CpG/OVA) for eliciting antitumor immune responses. (a) Schematic illustrations of preparation of MPVax-CpG/OVA; (b) The hydrodynamic diameters and zeta potentials; (c) Ex vivo fluorescent images of lymph nodes in different treatment groups; (d) B16-OVA tumor treatment schedule and growth curves in different treatment groups (Reprinted with permission from Ref.[
通过甘露聚糖的修饰实现了抗原和佐剂向淋巴结的高效传输,但是纳米颗粒携载抗原和佐剂在被树突细胞内吞后,其在亚细胞层面还需要到达不同的位点才能发挥相应的作用. 抗原进入树突状细胞后,其主要的递送途径是细胞质途径,即抗原与主要组织相容性复合物在内质网中进行复合体的组装,并进一步在高尔基体中优化最后递呈至细胞的表面. 然而,目前市场中使用的免疫佐剂如Toll样受体激动剂等其作用靶点通常在内涵体而不在细胞质中,这种亚细胞层面空间作用位点的不一致使得纳米疫苗即使到达抗原提呈细胞内依旧不能最大限度地刺激产生高效的抗肿瘤免疫响应. 为了解决激活抗原提呈细胞和促进抗原交叉提呈的时空协同问题,本课题组设计了一种本身具有干扰素基因刺激蛋白(stimulator of interferon genes,STING)佐剂功能的高分子疫苗递送载体来制备纳米疫苗. STING是一种位于细胞质内的模式识别受体,其在静息状态下会分散在内质网上,而在受到配体激活后会迁移到高尔基体上形成STING蛋白簇,同时引起该通路相关下游蛋白的磷酸化,最终诱导I型干扰素的分泌[
Fig. 8 PEI-M as carrier for the minimalist binary vaccine (BiVax) design. (a) Schematic illustration of the minimalist nanovaccine design and the mechanism in spatiotemporal orchestration of antigen cross-presentation and innate stimulation in the dendritic cell; (b) The concentration of IFN-β in the medium of DC2.4 cells after incubation with different types of PEI-M; (c) The therapeutic effect of PEI-4Bimi-based BiVax for MC38 tumor postoperative immunotherapy (Reprinted with permission from Ref.[
本文以本课题组的研究工作为基础,阐述了免疫药物体内传输过程中所面临的问题以及相应的解决方案与设计理念. 本课题组利用多种类别的高分子材料——天然多糖、聚氨基酸、聚乳酸、聚噁唑啉和聚乙烯亚胺等构建纳米颗粒与凝胶支架两类载体实现在肿瘤部位免疫抑制微环境的调节以及原位免疫激活,实现抗原和佐剂向淋巴结的高效协同传输以及系统性免疫响应的激活,揭示了传输材料在免疫药物体内发挥作用过程中的重要性,发展了有临床开发潜力的免疫药物新制剂,为药物传输材料在肿瘤免疫治疗领域的应用带来了新思路. 当然,这些工作只是对这一领域的很小一部分的探索,仍有大量的工作需要进一步去开展.
在以肿瘤为目标的药物传输材料研究方面,本课题组所设计的基于葡聚糖和聚乙二醇的抗肿瘤免疫植入件显示了出色的体内治疗效果和良好的体内安全性,表现出了极高的临床转化价值. 然而要真正实现临床转化,还需要解决很多问题,比如(1)需要设计更符合临床具体疾病类型的药物组合,(2)更符合临床使用场景的植入件尺寸及物性参数,(3)能够在临床实际发挥作用的使用剂量等. 在以淋巴结为目标的药物传输材料研究方面,目前的普遍认知是利用纳米载体向淋巴结内共传输抗原和佐剂有利于提升疫苗的免疫效力,然而,现有研究对于纳米疫苗到达淋巴结后在淋巴结内的分布行为关注甚少. 研究表明,大部分经皮下注射的纳米颗粒疫苗在到达淋巴结后都被限制在被膜下淋巴窦或皮质区,无法到达淋巴结深层的T细胞区,这成为限制纳米颗粒疫苗刺激产生高效细胞免疫的关键. 此外,近期的研究也发现疫苗的释放动力学会对疫苗的免疫效力产生巨大影响[
肿瘤免疫治疗的本质是通过外加干预让存在缺陷的肿瘤免疫循环过程重新运转起来. 除了肿瘤和淋巴结,整个免疫循环过程中许多环节存在的障碍都有待解决. 例如如何让在淋巴结产生的杀伤性T细胞更多地回流到肿瘤部位,这对于目前已经获批的过继细胞治疗方法仍然是一个难题. 利用高分子载体材料来传输免疫药物,解决免疫药物在体内作用中的时空问题,设计“纳米机器人”按照程序设定来完成体内复杂的过程,不仅体现学科交叉的魅力,并且有望最终攻克癌症,造福人民生命健康.
Arvanitis C. D.; Ferraro G. B.; Jain R. K. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat. Rev. Cancer, 2020, 20(1), 26-41. doi:10.1038/s41568-019-0205-x [Baidu Scholar]
Carneiro B. A.; El-Deiry W. S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol., 2020, 17(7), 395-417. doi:10.1038/s41571-020-0341-y [Baidu Scholar]
Hegde P. S.; Chen D. S. Top 10 challenges in cancer immunotherapy. Immunity, 2020, 52(1), 17-35. doi:10.1016/j.immuni.2019.12.011 [Baidu Scholar]
Topalian S. L.; Brahmer J. R.; Gettinger S. N.; Smith D. C.; McDermott D. F.; Powderly J. D.; Carvajal R. D.; Sosman J. A.; Atkins M. B.; Leming P. D.; Spigel D. R.; Antonia S. J.; Horn L.; Drake C. G.; Pardoll D. M.; Chen L. P.; Sharfman W. H.; Anders R. A.; Taube J. M.; McMiller T. L.; Xu H. Y.; Korman A. J.; Jure-Kunkel M.; Agrawal S.; McDonald D.; Kollia G. D.; Gupta A.; Wigginton J. M.; Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med., 2012, 366(26), 2443-2454. doi:10.1056/nejmoa1200690 [Baidu Scholar]
Sahai E.; Astsaturov I.; Cukierman E.; DeNardo D. G.; Egeblad M.; Evans R. M.; Fearon D.; Greten F. R.; Hingorani S. R.; Hunter T.; Hynes R. O.; Jain R. K.; Janowitz T.; Jorgensen C.; Kimmelman A. C.; Kolonin M. G.; Maki R. G.; Puré E.; Ramirez D. C.; Scherz-Shouval R.; Sherman M. H.; Stewart S.; Tlsty T. D.; Tuveson D. A.; Watt F. M.; Weaver V.; Weeraratna A. T.; Werb Z. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer, 2020, 20(3), 174-186. doi:10.1038/s41568-019-0238-1 [Baidu Scholar]
Vaddepally R. K.; Kharel P.; Pandey R.; Garje R.; Chandra A. B. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers, 2020, 12(3), 738. doi:10.3390/cancers12030738 [Baidu Scholar]
Waldman A. D.; Fritz J. M.; Lenardo M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol., 2020, 20(11), 651-668. doi:10.1038/s41577-020-0306-5 [Baidu Scholar]
叶佳依, 高晶, 王当歌, 于海军. 基于纳米递药系统的肿瘤免疫检查点联合治疗研究进展. 中国科学: 生命科学, 2021, 51(7), 782-792. [Baidu Scholar]
Jiang J. P.; Mei J.; Yi S. Q.; Feng C. J.; Ma Y. F.; Liu Y.; Liu Y.; Chen C. Y. Tumor associated macrophage and microbe: The potential targets of tumor vaccine delivery. Adv. Drug Deliv. Rev., 2022, 180, 114046. doi:10.1016/j.addr.2021.114046 [Baidu Scholar]
高晶, 王伟奇, 于海军. 酸敏感高分子纳米药物载体在肿瘤治疗中的应用研究. 高分子学报, 2019, 50(11), 1156-1166. doi:10.11777/j.issn1000-3304.2019.19133 [Baidu Scholar]
A multiscale systems perspective on cancer, immunotherapy, and Interleukin-12. Mol. Cancer, 2010, 9, 242. doi:10.1186/1476-4598-9-242 [Baidu Scholar]
Maggi E.; Vultaggio A.; Matucci A. T-cell responses during allergen-specific immunotherapy. Curr. Opin. Allergy Clin. Immunol., 2012, 12(1), 1-6. doi:10.1097/aci.0b013e32834ecc9a [Baidu Scholar]
Lei X.; Lei Y.; Li J. K.; Du W. X.; Li R. G.; Yang J.; Li J.; Li F.; Tan H. B. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett., 2020, 470, 126-133. doi:10.1016/j.canlet.2019.11.009 [Baidu Scholar]
Martin J. D.; Cabral H.; Stylianopoulos T.; Jain R. K. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat. Rev. Clin. Oncol., 2020, 17(4), 251-266. doi:10.1038/s41571-019-0308-z [Baidu Scholar]
De Vlieghere E.; Verset L.; Demetter P.; Bracke M.; De Wever O. Cancer-associated fibroblasts as target and tool in cancer therapeutics and diagnostics. Virchows Arch., 2015, 467(4), 367-382. doi:10.1007/s00428-015-1818-4 [Baidu Scholar]
候博, 王当歌, 高晶, 王晖, 李亚平, 于海军. 微环境激活型纳米递药系统用于肿瘤免疫治疗的研究进展. 药学学报, 2019, 54(10), 1802-1809. doi:10.16438/j.0513-4870.2019-0560 [Baidu Scholar]
Balkwill F.; Mantovani A. Inflammation and cancer: back to virchow? Lancet, 2001, 357(9255), 539-545. doi:10.1016/s0140-6736(00)04046-0 [Baidu Scholar]
Coussens L. M.; Werb, Z. Inflammation and cancer. Nature, 2002, 420(6917), 860-867. doi:10.1038/nature01322 [Baidu Scholar]
Grivennikov S. I.; Greten F. R.; Karin M. Immunity, inflammation, and cancer. Cell, 2010, 140(6), 883-899. doi:10.1016/j.cell.2010.01.025 [Baidu Scholar]
Mantovani A.; Allavena P.; Sica A.; Balkwill F. Cancer-related inflammation. Nature, 2008, 454(7203), 436-444. doi:10.1038/nature07205 [Baidu Scholar]
Prima V.; Kaliberova L. N.; Kaliberov S.; Curiel D. T.; Kusmartsev S. COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc. Natl. Acad. Sci. U. S. A, 2017, 114(5), 1117-1122. doi:10.1073/pnas.1612920114 [Baidu Scholar]
Sharma S.; Stolina M.; Yang S. C.; Baratelli F.; Lin J. F.; Atianzar K.; Luo J.; Zhu L.; Lin Y.; Huang M.; Dohadwala M.; Batra R. K.; Dubinett S. M. Tumor cyclooxygenase 2-dependent suppression of dendritic cell function. Clin. Cancer Res., 2003, 9(3), 961-968. [Baidu Scholar]
Murakami M.; Naraba H.; Tanioka T.; Semmyo N.; Nakatani Y.; Kojima F.; Ikeda T.; Fueki M.; Ueno A.; Oh-ishi S.; Kudo I. Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J. Biol. Chem., 2000, 275(42), 32783-32792. doi:10.1074/jbc.m003505200 [Baidu Scholar]
Swildens K. X.; Sillevis Smitt P. A. E.; van den Bent M. J.; French P. J.; Geurts M. The effect of dexamethasone on the microenvironment and efficacy of checkpoint inhibitors in glioblastoma: a systematic review. Neurooncol Adv., 2022, 4(1), vdac087. doi:10.1093/noajnl/vdac087 [Baidu Scholar]
Tanabe T.; Tohnai N. Cyclooxygenase isozymes and their gene structures and expression. Prostaglandins Other Lipid Mediat., 2002, 68-69, 95-114. [Baidu Scholar]
Ma S.; Song W. T.; Xu Y. D.; Si X. H.; Zhang D. W.; Lv S. X.; Yang C. G.; Ma L. L.; Tang Z. H.; Chen X. S. Neutralizing tumor-promoting inflammation with polypeptide-dexamethasone conjugate for microenvironment modulation and colorectal cancer therapy. Biomaterials, 2020, 232, 119676. doi:10.1016/j.biomaterials.2019.119676 [Baidu Scholar]
Serhan C. N.; Hong S.; Gronert K.; Colgan S. P.; Devchand P. R.; Mirick G.; Moussignac R. L. Resolvins. J. Exp. Med., 2002, 196(8), 1025-1037. doi:10.1084/jem.20020760 [Baidu Scholar]
Silverstein F. E.; Faich G.; Goldstein J. L.; Simon L. S.; Pincus T.; Whelton A.; Makuch R.; Eisen G.; Agrawal N. M.; Stenson W. F.; Burr A. M.; Zhao W. W.; Kent J. D.; Lefkowith J. B.; Verburg K. M.; Geis G. S. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: a randomized controlled trial. Celecoxib long-term arthritis safety study. JAMA, 2000, 284(10), 1247-1255. doi:10.1001/jama.284.10.1247 [Baidu Scholar]
Simmons D. L.; Botting R. M.; Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol. Rev., 2004, 56(3), 387-437. doi:10.1124/pr.56.3.3 [Baidu Scholar]
Tsujii M.; Kawano S.; DuBois R. N.. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc. Natl. Acad. Sci. U. S. A., 1997, 94(7), 3336-3340. doi:10.1073/pnas.94.7.3336 [Baidu Scholar]
Ma S.; Song W. T.; Xu Y. D.; Si X. H.; Zhang Y.; Tang Z. H.; Chen X. S. A ROS-responsive aspirin polymeric prodrug for modulation of tumor microenvironment and cancer immunotherapy. CCS Chem., 2020, 2(6), 390-400. doi:10.31635/ccschem.020.202000140 [Baidu Scholar]
Dapito D. H.; Mencin A.; Gwak G. Y.; Pradere J. P.; Jang M. K.; Mederacke I.; Caviglia J. M.; Khiabanian H.; Adeyemi A.; Bataller R.; Lefkowitch J. H.; Bower M.; Friedman R.; Sartor R. B.; Rabadan R.; Schwabe R. F. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell, 2012, 21(4), 504-516. doi:10.1016/j.ccr.2012.02.007 [Baidu Scholar]
Parker B. J.; Wearsch P. A.; Veloo A. C. M.; Rodriguez-Palacios A. The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front. Immunol., 2020, 11, 906. doi:10.3389/fimmu.2020.00906 [Baidu Scholar]
Reddy B. S.; Rivenson A. Inhibitory effect of Bifidobacterium longum on colon, mammary, and liver carcinogenesis induced by 2-amino-3-methylimidazo[4, 5-f]quinoline, mutagenafood. Cancer Res., 1993, 53(17), 3914-3918. [Baidu Scholar]
Ridlon J. M.; Kang D. J.; Hylemon P. B.; Bajaj J. S. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol., 2014, 30(3), 332-338. doi:10.1097/mog.0000000000000057 [Baidu Scholar]
Chaput N.; Lepage P.; Coutzac C.; Soularue E.; Le Roux K.; Monot C.; Boselli L.; Routier E.; Cassard L.; Collins M.; Vaysse T.; Marthey L.; Eggermont A.; Asvatourian V.; Lanoy E.; Mateus C.; Robert C.; Carbonnel F. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann. Oncol., 2017, 28(6), 1368-1379. doi:10.1093/annonc/mdx108 [Baidu Scholar]
Li Z. P.; Yang S. Q.; Lin H. Z.; Huang J. W.; Watkins P. A.; Moser A. B.; DeSimone C.; Song X. Y.; Diehl A. M. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology, 2003, 37(2), 343-350. doi:10.1053/jhep.2003.50048 [Baidu Scholar]
Mazmanian S. K.; Round J. L.; Kasper D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature, 2008, 453(7195), 620-625. doi:10.1038/nature07008 [Baidu Scholar]
Song W. T.; Shen L. M.; Wang Y.; Liu Q.; Goodwin T. J.; Li J. J.; Dorosheva O.; Liu T. Z.; Liu R. H.; Huang L. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nat. Commun., 2018, 9(1), 2237. doi:10.1038/s41467-018-04605-x [Baidu Scholar]
Xie G. X.; Wang X. N.; Huang F. J.; Zhao A. H.; Chen W. L.; Yan J. Y.; Zhang Y. J.; Lei S.; Ge K.; Zheng X. J.; Liu J. J.; Su M. M.; Liu P.; Jia W. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis. Int. J. Cancer, 2016, 139(8), 1764-1775. doi:10.1002/ijc.30219 [Baidu Scholar]
Watanabe M.; Houten S. M.; Mataki C.; Christoffolete M. A.; Kim B. W.; Sato H.; Messaddeq N.; Harney J. W.; Ezaki O.; Kodama T.; Schoonjans K.; Bianco A. C.; Auwerx J. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 2006, 439(7075), 484-489. doi:10.1038/nature04330 [Baidu Scholar]
Campbell C.; McKenney P. T.; Konstantinovsky D.; Isaeva O. I.; Schizas M.; Verter J.; Mai C.; Jin W. B.; Guo C. J.; Violante S.; Ramos R. J.; Cross J. R.; Kadaveru K.; Hambor J.; Rudensky A. Y. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature, 2020, 581(7809), 475-479. doi:10.1038/s41586-020-2193-0 [Baidu Scholar]
Joyce S. A.; Gahan C. G. M. Disease-associated changes in bile acid profiles and links to altered gut microbiota. Dig. Dis., 2017, 35(3), 169-177. doi:10.1159/000450907 [Baidu Scholar]
Ji G. F.; Ma L. S.; Yao H. C.; Ma S.; Si X. H.; Wang Y. L.; Bao X.; Ma L. L.; Chen F. F.; Ma C.; Huang L.; Fang X. D.; Song W. T. Precise delivery of obeticholic acid via nanoapproach for triggering natural killer T cell-mediated liver cancer immunotherapy. Acta Pharm. Sin. B, 2020, 10(11), 2171-2182. doi:10.1016/j.apsb.2020.09.004 [Baidu Scholar]
Dong S.; Ma S.; Liu Z. L.; Ma L. L.; Zhang Y.; Tang Z. H.; Deng M. X.; Song W. T. Functional amphiphilic poly(2-oxazoline) block copolymers as drug carriers: the relationship between structure and drug loading capacity. Chinese J Polym Sci, 2021, 39(7), 865-873. doi:10.1007/s10118-021-2547-6 [Baidu Scholar]
Ji G. F.; Si X. H.; Dong S.; Xu Y. J.; Li M. Q.; Yang B.; Tang Z. H.; Fang X. D.; Huang L.; Song W. T.; Chen X. S. Manipulating liver bile acid signaling by nanodelivery of bile acid receptor modulators for liver cancer immunotherapy. Nano Lett., 2021, 21(16), 6781-6791. doi:10.1021/acs.nanolett.1c01360 [Baidu Scholar]
Hammerich L.; Bhardwaj N.; Kohrt H. E.; Brody J. D. In situ vaccination for the treatment of cancer. Immunotherapy, 2016, 8(3), 315-330. doi:10.2217/imt.15.120 [Baidu Scholar]
Han L.; Yuan Z.; Guo K.; He L. Recent advances of in situ vaccine-based combination therapies in the treatment of cancer. Chin. Pharm. J., 2021, 56(19), 1537-1545. [Baidu Scholar]
Lurje I.; Werner W.; Mohr R.; Roderburg C.; Tacke F.; Hammerich L. In situ vaccination as a strategy to modulate the immune microenvironment of hepatocellular carcinoma. Front. Immunol., 2021, 12, 650486. doi:10.3389/fimmu.2021.650486 [Baidu Scholar]
Xu Y. D.; Ma S.; Si X. H.; Zhao J. Y.; Yu H. Y.; Ma L. L.; Song W. T.; Tang Z. H. Polyethyleneimine-CpG nano complex as an in situ vaccine for boosting anticancer immunity in melanoma. Macromol. Biosci., 2021, 21(2), e2000207. doi:10.1002/mabi.202000207 [Baidu Scholar]
Xu Y. D.; Ma S.; Zhao J. Y.; Si X. H.; Huang Z. C.; Zhang Y.; Song W. T.; Tang Z. H.; Chen X. S. Trinity immune enhancing nanoparticles for boosting antitumor immune responses of immunogenic chemotherapy. Nano Res., 2022, 15(2), 1183-1192. doi:10.1007/s12274-021-3622-6 [Baidu Scholar]
Zhang Y.; Ma S.; Liu X. M.; Xu Y. D.; Zhao J. Y.; Si X. H.; Li H. X.; Huang Z. C.; Wang Z. X.; Tang Z. H.; Song W. T.; Chen X. S. Supramolecular assembled programmable nanomedicine as in situ cancer vaccine for cancer immunotherapy. Adv. Mater., 2021, 33(7), e2007293. doi:10.1002/adma.202007293 [Baidu Scholar]
Fakhri E.; Eslami H.; Maroufi P.; Pakdel F.; Taghizadeh S.; Ganbarov K.; Yousefi M.; Tanomand A.; Yousefi B.; Mahmoudi S.; Kafil H. S. Chitosan biomaterials application in dentistry. Int. J. Biol. Macromol., 2020, 162, 956-974. doi:10.1016/j.ijbiomac.2020.06.211 [Baidu Scholar]
Pomeroy J. E.; Helfer A.; Bursac N. Biomaterializing the promise of cardiac tissue engineering. Biotechnol. Adv., 2020, 42, 107353. doi:10.1016/j.biotechadv.2019.02.009 [Baidu Scholar]
Yang F.; Shi K.; Jia Y. P.; Hao Y.; Peng J. R.; Qian Z. Y. Advanced biomaterials for cancer immunotherapy. Acta Pharmacol. Sin., 2020, 41(7), 911-927. doi:10.1038/s41401-020-0372-z [Baidu Scholar]
Phuengkham H.; Song C.; Lim Y. T.. A designer scaffold with immune nanoconverters for reverting immunosuppression and enhancing immune checkpoint blockade therapy. Adv. Mater., 2019, 31(42), e1903242. doi:10.1002/adma.201903242 [Baidu Scholar]
Ren L.; Lim Y. T. Degradation-regulatable architectured implantable macroporous scaffold for the spatiotemporal modulation of immunosuppressive microenvironment and enhanced combination cancer immunotherapy. Adv. Funct. Mater., 2018, 28(47), 1804490. doi:10.1002/adfm.201804490 [Baidu Scholar]
Ji G. F.; Zhang Y.; Si X. H.; Yao H. C.; Ma S.; Xu Y. D.; Zhao J. Y.; Ma C.; He C. L.; Tang Z. H.; Fang X. D.; Song W. T.; Chen X. S. Biopolymer immune implants' sequential activation of innate and adaptive immunity for colorectal cancer postoperative immunotherapy. Adv. Mater., 2021, 33(3), e2004559. doi:10.1002/adma.202004559 [Baidu Scholar]
Si X. H.; Ji G. F.; Ma S.; Xu Y. D.; Zhao J. Y.; Huang Z. C.; Zhang Y.; Song W. T.; Tang Z. H. Biodegradable implants combined with immunogenic chemotherapy and immune checkpoint therapy for peritoneal metastatic carcinoma postoperative treatment. ACS Biomater. Sci. Eng., 2020, 6(9), 5281-5289. doi:10.1021/acsbiomaterials.0c00840 [Baidu Scholar]
Si X. H.; Ji G. F.; Ma S.; Chen H. Y.; Shi Z. Y.; Zhang Y.; Tang Z. H.; Song W. T.; Chen X. S. Comprehensive evaluation of biopolymer immune implants for peritoneal metastasis carcinoma therapy. J. Control. Release, 2023, 353, 289-302. doi:10.1016/j.jconrel.2022.11.028 [Baidu Scholar]
Ke X. Y.; Howard G. P.; Tang H. Y.; Cheng B.; Saung M. T.; Santos J. L.; Mao H. Q. Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv. Drug Deliv. Rev., 2019, 151, 72-93. doi:10.1016/j.addr.2019.09.005 [Baidu Scholar]
Liu H. P.; Moynihan K. D.; Zheng Y. R.; Szeto G. L.; Li A. V.; Huang B.; van Egeren D. S.; Park C.; Irvine D. J. Structure-based programming of lymph-node targeting in molecular vaccines. Nature, 2014, 507(7493), 519-522. doi:10.1038/nature12978 [Baidu Scholar]
Xu Y. D.; Ma S.; Zhao J. Y.; Chen H. Y.; Si X. H.; Huang Z. C.; Yu Z. T.; Song W. T.; Tang Z. H.; Chen X. S. Mannan-decorated pathogen-like polymeric nanoparticles as nanovaccine carriers for eliciting superior anticancer immunity. Biomaterials, 2022, 284, 121489. doi:10.1016/j.biomaterials.2022.121489 [Baidu Scholar]
Zhao J. Y.; Ma S.; Xu Y. D.; Si X. H.; Yao H. C.; Huang Z. C.; Zhang Y.; Yu H. Y.; Tang Z. H.; Song W. T.; Chen X. S. In situ activation of STING pathway with polymeric SN38 for cancer chemoimmunotherapy. Biomaterials, 2021, 268, 120542. doi:10.1016/j.biomaterials.2020.120542 [Baidu Scholar]
Ishikawa H.; Ma Z.; Barber G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature, 2009, 461(7265), 788-792. doi:10.1038/nature08476 [Baidu Scholar]
West A. P.; Khoury-Hanold W.; Staron M.; Tal M. C.; Pineda C. M.; Lang S. M.; Bestwick M.; Duguay B. A.; Raimundo N.; MacDuff D. A.; Kaech S. M.; Smiley J. R.; Means R. E.; Iwasaki A.; Shadel G. S. Mitochondrial DNA stress primes the antiviral innate immune response. Nature, 2015, 520(7548), 553-557. doi:10.1038/nature14156 [Baidu Scholar]
Zhao J. Y.; Xu Y. D.; Ma S.; Wang Y. B.; Huang Z. C.; Qu H. Y.; Yao H. C.; Zhang Y.; Wu G. L.; Huang L.; Song W. T.; Tang Z. H.; Chen X. S. A minimalist binary vaccine carrier for personalized postoperative cancer vaccine therapy. Adv. Mater., 2022, 34(10), e2109254. doi:10.1002/adma.202109254 [Baidu Scholar]
Zhao J. Y.; Song W. T.; Tang Z. H.; Chen X. S. Macromolecular effects in medicinal chemistry. Acta Chim. Sin., 2022, 80(4), 563. doi:10.6023/a21120602 [Baidu Scholar]
Lavine J. S.; Rohani P. Resolving pertussis immunity and vaccine effectiveness using incidence time series. Expert Rev. Vaccines, 2012, 11(11), 1319-1329. doi:10.1586/erv.12.109 [Baidu Scholar]
Sarmadi M.; Ta C.; van Lonkhuyzen A. M.; De Fiesta D. C.; Kanelli M.; Sadeghi I.; Behrens A. M.; Ingalls B.; Menon N.; Daristotle J. L.; Yu J. L.; Langer R.; Jaklenec A. Experimental and computational understanding of pulsatile release mechanism from biodegradable core-shell microparticles. Sci. Adv., 2022, 8(28), eabn5315. doi:10.1126/sciadv.abn5315 [Baidu Scholar]
Shih T. Y.; Najibi A. J.; Bartlett A. L.; Li A. W.; Mooney D. J. Ultrasound-triggered release reveals optimal timing of CpG-ODN delivery from a cryogel cancer vaccine. Biomaterials, 2021, 279, 121240. doi:10.1016/j.biomaterials.2021.121240 [Baidu Scholar]
Han L.; Peng K.; Qiu L. Y.; Li M.; Ruan J. H.; He L. L.; Yuan Z. X. Hitchhiking on controlled-release drug delivery systems: opportunities and challenges for cancer vaccines. Front. Pharmacol., 2021, 12, 679602. doi:10.3389/fphar.2021.679602 [Baidu Scholar]
455
Views
357
Downloads
0
CSCD
Related Articles
Related Author
Related Institution