浏览全部资源
扫码关注微信
聚合物分子工程国家重点实验室 复旦大学高分子科学系 先进材料实验室 上海 200438
[ "王兵杰,男,1986年生. 复旦大学先进材料实验室副研究员,博士生导师. 2009年本科毕业于四川大学高分子材料与工程专业,2014年获得中国科学院宁波材料技术与工程研究所高分子化学与物理专业理学博士学位,随后进入复旦大学先进材料实验室工作至今. 2022年获得国家自然科学基金优秀青年基金资助. 研究方向:柔性储能材料与器件,重点在高性能纤维储能器件的基础研究与产业化应用方面开展了系统研究. E-mail: wangbingjie@fudan.edu.cn" ]
纸质出版日期:2023-06-20,
网络出版日期:2023-03-16,
收稿日期:2022-12-30,
录用日期:2023-02-13
扫 描 看 全 文
江海波,廖萌,常英凡等.纤维储能电池的设计和应用[J].高分子学报,2023,54(06):892-909.
Jiang Hai-bo,Liao Meng,Chang Ying-fan,et al.Design and Application of Fiber Batteries[J].ACTA POLYMERICA SINICA,2023,54(06):892-909.
江海波,廖萌,常英凡等.纤维储能电池的设计和应用[J].高分子学报,2023,54(06):892-909. DOI: 10.11777/j.issn1000-3304.2022.22454.
Jiang Hai-bo,Liao Meng,Chang Ying-fan,et al.Design and Application of Fiber Batteries[J].ACTA POLYMERICA SINICA,2023,54(06):892-909. DOI: 10.11777/j.issn1000-3304.2022.22454.
以纤维锂离子电池为代表的纤维储能电池凭借其独特的一维结构,在物联网、可穿戴技术等新兴领域发挥着重要作用. 然而,这类纤维储能电池在面向实际应用的过程中存在高效制备和性能匹配等难题尚未解决,最终无法实现由科学理论向实际应用的过渡. 本文结合本课题组近期工作,总结了柔性纤维储能电池方面的研究进展. 结合纤维锂离子电池的电化学性能、力学性能以及使用耐受性,首先讨论并归纳了纤维锂离子电池的连续化制备方法;进一步,总结了基于连续化制备的纤维锂离子电池所构建的储能织物以及与可穿戴设备集成等方面的应用,重点聚焦于其在大数据云健康、未来通讯、生物医学等领域的应用场景;最后,总结了柔性纤维储能电池的发展现状并展望了该研究领域的未来发展方向.
With the unique one-dimensional structure
fiber shape energy storage batteries
represented by lithium-ion fiber batteries
play an important role in energy supplement for wearable devices. The diameter of lithium-ion fiber batteries usually lies between tens to hundreds of micrometers. The outstanding flexibility can accommodate multiple deformation such as bending
twisting
and stretching. By low-cost weaving method
lithium-ion fiber batteries can be easily weaved into energy storage fabrics and integrate with daily clothes. However
traditional fiber batteries suffer from inefficient preparation and poor performance matching
which can hardly move forward from laboratory to industrial production. In addition
researchers used to believe that with the increase of length
the internal resistance of fiber batteries also increase
which seriously hindered the theoretical development of large-scale fiber batteries. In this feature article
we briefly summarize the research progress of fiber shape energy storage devices in recent years. For practical application requirement
the development of flexible lithium-ion fiber batteries is sufficiently concluded based on the work of our group. Firstly
continuous manufacture of lithium-ion fiber batteries is discussed. Large-scale production of lithium-ion batteries was realized for the first time
which met the prerequisites of broad usage. The variation of internal resistance with length was revealed for the special 1D structure of fiber batteries. The electrochemical performance
mechanical properties
and tolerance performance were characterized under practical scenarios. Furthermore
based on continuously prepared lithium-ion fiber batteries
energy storage fabrics and integration with wearable devices are developed. This showed promising applications in healthcare
communication
and motion monitoring. Finally
the future of flexible fiber shape energy storage devices is prospected. Efforts should be devoted to improving the electrochemical performance of lithium-ion fiber batteries
such as energy density
power density and cycle performance. Besides
fiber battery pack technique should be investigated to adapt more real-life scenarios. Suitable application for energy storage fabrics are still awaited to be explored.
纤维电池连续化制备储能织物集成
Fiber batteryContinuous productionEnergy storage fabricsIntegration
Stoppa M.; Chiolerio A. Wearable electronics and smart textiles: a critical review. Sensors (Basel), 2014, 14(7), 11957-11992. doi:10.3390/s140711957http://dx.doi.org/10.3390/s140711957
Wang X. F.; Lu X. H.; Liu B.; Chen D.; Tong Y. X.; Shen G. Z. Flexible energy-storage devices: design consideration and recent progress. Adv. Mater., 2014, 26(28), 4763-4782. doi:10.1002/adma.201400910http://dx.doi.org/10.1002/adma.201400910
Zeng W.; Shu L.; Li Q.; Chen S.; Wang F.; Tao X. M. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater., 2014, 26(31), 5310-5336. doi:10.1002/adma.201400633http://dx.doi.org/10.1002/adma.201400633
Shi Q. F.; Dong B. W.; He T.; Sun Z. D.; Zhu J. X.; Zhang Z. X.; Lee C. K. Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and internet of things. InfoMat, 2020, 2(6), 1131-1162. doi:10.1002/inf2.12122http://dx.doi.org/10.1002/inf2.12122
Chen M. X.; Wang Z.; Li K. W.; Wang X. D.; Wei L. Elastic and stretchable functional fibers: a review of materials, fabrication methods, and applications. Adv. Fiber Mater., 2021, 3(1), 1-13. doi:10.1007/s42765-020-00057-5http://dx.doi.org/10.1007/s42765-020-00057-5
Liu W.; Song M. S.; Kong B.; Cui Y. Flexible and stretchable energy storage: recent advances and future perspectives. Adv. Mater., 2017, 29(1), 1603436. doi:10.1002/adma.201603436http://dx.doi.org/10.1002/adma.201603436
Ma W. J.; Zhang Y.; Pan S. W.; Cheng Y. H.; Shao Z. Y.; Xiang H. X.; Chen G. Y.; Zhu L. P.; Weng W.; Bai H.; Zhu M. F. Smart fibers for energy conversion and storage. Chem. Soc. Rev., 2021, 50(12), 7009-7061. doi:10.1039/d0cs01603ahttp://dx.doi.org/10.1039/d0cs01603a
Wang L.; Fu X. M.; He J. Q.; Shi X.; Chen T. Q.; Chen P. N.; Wang B. J.; Peng H. S. Application challenges in fiber and textile electronics. Adv. Mater., 2020, 32(5), e1901971. doi:10.1002/adma.202070033http://dx.doi.org/10.1002/adma.202070033
Chen M. Z.; Zhang Y. Y.; Xing G. C.; Chou S. L.; Tang Y. X. Electrochemical energy storage devices working in extreme conditions. Energy Environ. Sci., 2021, 14(6), 3323-3351. doi:10.1039/d1ee00271fhttp://dx.doi.org/10.1039/d1ee00271f
Li H.; Wang H. B.; Xu Z.; Wang K. X.; Ge M. Z.; Gan L.; Zhang Y. Y.; Tang Y. X.; Chen S. Thermal-responsive and fire-resistant materials for high-safety lithium-ion batteries. Small, 2021, 17(43), e2103679. doi:10.1002/smll.202103679http://dx.doi.org/10.1002/smll.202103679
Lee S. Y.; Choi K. H.; Choi W. S.; Kwon Y. H.; Jung H. R.; Shin H. C.; Kim J. Y. Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries. Energy Environ. Sci., 2013, 6(8), 2414-2423. doi:10.1039/c3ee24260ahttp://dx.doi.org/10.1039/c3ee24260a
Li L.; Wu Z.; Yuan S.; Zhang X. B. Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci., 2014, 7(7), 2101-2122. doi:10.1039/c4ee00318ghttp://dx.doi.org/10.1039/c4ee00318g
Zhou G. M.; Li F.; Cheng H. M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci., 2014, 7(4), 1307-1338. doi:10.1039/c3ee43182ghttp://dx.doi.org/10.1039/c3ee43182g
Sumboja A.; Liu J. W.; Zheng W. G.; Zong Y.; Zhang H.; Liu Z. L. Electrochemical energy storage devices for wearable technology: A rationale for materials selection and cell design. Chem. Soc. Rev., 2018, 47(15), 5919-5945. doi:10.1039/c8cs00237ahttp://dx.doi.org/10.1039/c8cs00237a
Chang J.; Huang Q. Y.; Gao Y.; Zheng Z. J. Pathways of developing high-energy-density flexible lithium batteries. Adv. Mater., 2021, 33(46), e2004419. doi:10.1002/adma.202170363http://dx.doi.org/10.1002/adma.202170363
Koo M.; Park K. I.; Lee S. H.; Suh M.; Jeon D. Y.; Choi J. W.; Kang K.; Lee K. J. Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett., 2012, 12(9), 4810-4816. doi:10.1021/nl302254vhttp://dx.doi.org/10.1021/nl302254v
Wang K.; Luo S.; Wu Y.; He X. F.; Zhao F.; Wang J. P.; Jiang K. L.; Fan S. S. Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Adv. Funct. Mater., 2013, 23(7), 846-853. doi:10.1002/adfm.201202412http://dx.doi.org/10.1002/adfm.201202412
Liu W.; Chen Z.; Zhou G. M.; Sun Y. M.; Lee H. R.; Liu C.; Yao H. B.; Bao Z. N.; Cui Y. 3D porous sponge-inspired electrode for stretchable lithium-ion batteries. Adv. Mater., 2016, 28(18), 3578-3583. doi:10.1002/adma.201505299http://dx.doi.org/10.1002/adma.201505299
Zheng S.; Wu Z. S.; Zhou F.; Wang X.; Ma J.; Liu C.; He Y. B.; Bao X. All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance. Nano Energy, 2018, 51, 613-620. doi:10.1016/j.nanoen.2018.07.009http://dx.doi.org/10.1016/j.nanoen.2018.07.009
Liao X. B.; Shi C. M.; Wang T. Y.; Qie B. Y.; Chen Y. L.; Yang P. F.; Cheng Q.; Zhai H. W.; Chen M. J.; Wang X.; Chen X.; Yang Y. High-energy-density foldable battery enabled by zigzag-like design. Adv. Energy Mater., 2019, 9(4), 1802998. doi:10.1002/aenm.201802998http://dx.doi.org/10.1002/aenm.201802998
Song Z. M.; Ma T.; Tang R.; Cheng Q.; Wang X.; Krishnaraju D.; Panat R.; Chan C. K.; Yu H. Y.; Jiang H. Q. Origami lithium-ion batteries. Nat. Commun., 2014, 5, 3140. doi:10.1038/ncomms4140http://dx.doi.org/10.1038/ncomms4140
Mackanic D. G.; Kao M.; Bao Z. N. Enabling deformable and stretchable batteries. Adv. Energy Mater., 2020, 10(29), 2001424. doi:10.1002/aenm.202001424http://dx.doi.org/10.1002/aenm.202001424
Mo F. N.; Liang G. J.; Huang Z. D.; Li H. F.; Wang D. H.; Zhi C. Y. An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties. Adv. Mater., 2020, 32(5), e1902151. doi:10.1002/adma.201902151http://dx.doi.org/10.1002/adma.201902151
Wang Z.; Chen M. X.; Zheng Y.; Zhang J.; Wang Z. X.; Yang J.; Zhang Q. C.; He B.; Qi M.; Zhang H. Z.; Li K. W.; Wei L. Advanced thermally drawn multimaterial fibers: structure-enabled functionalities. Adv. Devices Instrum., 2021, 2021, 1-15. doi:10.34133/2021/9676470http://dx.doi.org/10.34133/2021/9676470
Shen Y. N.; Wang Z.; Wang Z. X.; Wang J. J.; Yang X.; Zheng X. H.; Chen H. S.; Li K. W.; Wei L.; Zhang T. Thermally drawn multifunctional fibers: toward the next generation of information technology. InfoMat, 2022, 4(7), 98-119. doi:10.1002/inf2.12318http://dx.doi.org/10.1002/inf2.12318
Liu L. B.; Yu Y.; Yan C.; Li K.; Zheng Z. J. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes. Nat. Commun., 2015, 6, 7260. doi:10.1038/ncomms8260http://dx.doi.org/10.1038/ncomms8260
Zhao Y. M.; Dong D. S.; Wang Y.; Gong S.; An T. C.; Yap L. W.; Cheng W. L. Highly stretchable fiber-shaped supercapacitors based on ultrathin gold nanowires with double-helix winding design. ACS Appl. Mater. Interfaces, 2018, 10(49), 42612-42620. doi:10.1021/acsami.8b14769http://dx.doi.org/10.1021/acsami.8b14769
Du X.; Zhang K. Recent progress in fibrous high-entropy energy harvesting devices for wearable applications. Nano Energy, 2022, 101, 107600. doi:10.1016/j.nanoen.2022.107600http://dx.doi.org/10.1016/j.nanoen.2022.107600
Jung Y.; Jeong Y. C.; Kim J. H.; Kim Y. S.; Kim T.; Cho Y. S.; Yang S. J.; Park C. R. One step preparation and excellent performance of CNT yarn based flexible micro lithium ion batteries. Energy Storage Mater., 2016, 5, 1-7. doi:10.1016/j.ensm.2016.05.006http://dx.doi.org/10.1016/j.ensm.2016.05.006
Wang Y. B.; Chen C. J.; Xie H.; Gao T. T.; Yao Y. G.; Pastel G.; Han X. G.; Li Y. J.; Zhao J. P.; Fu K. K.; Hu L. B. 3D-printed all-fiber Li-ion battery toward wearable energy storage. Adv. Funct. Mater., 2017, 27(43), 1703140. doi:10.1002/adfm.201703140http://dx.doi.org/10.1002/adfm.201703140
Kwon Y. H.; Woo S. W.; Jung H. R.; Yu H. K.; Kim K.; Oh B. H.; Ahn S.; Lee S. Y.; Song S. W.; Cho J.; Shin H. C.; Kim J. Y. Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv. Mater., 2012, 24(38), 5192-5197. doi:10.1002/adma.201202196http://dx.doi.org/10.1002/adma.201202196
Ren J.; Li L.; Chen C.; Chen X. L.; Cai Z. B.; Qiu L. B.; Wang Y. G.; Zhu X. R.; Peng H. S. Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater., 2013, 25(8), 1155-1159. doi:10.1002/adma.201203445http://dx.doi.org/10.1002/adma.201203445
Lin H. J.; Weng W.; Ren J.; Qiu L. B.; Zhang Z. T.; Chen P. N.; Chen X. L.; Deng J.; Wang Y. G.; Peng H. S. Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv. Mater., 2014, 26(8), 1217-1222. doi:10.1002/adma.201304319http://dx.doi.org/10.1002/adma.201304319
Ren J.; Zhang Y.; Bai W. Y.; Chen X. L.; Zhang Z. T.; Fang X.; Weng W.; Wang Y. G.; Peng H. S. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angew. Chem. Int. Ed., 2014, 53(30), 7864-7869. doi:10.1002/anie.201402388http://dx.doi.org/10.1002/anie.201402388
Weng W.; Sun Q.; Zhang Y.; Lin H. J.; Ren J.; Lu X.; Wang M.; Peng H. S. Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances. Nano Lett., 2014, 14(6), 3432-3438. doi:10.1021/nl5009647http://dx.doi.org/10.1021/nl5009647
Zhang Y.; Bai W. Y.; Ren J.; Weng W.; Lin H. J.; Zhang Z. T.; Peng H. S. Super-stretchy lithium-ion battery based on carbon nanotube fiber. J. Mater. Chem. A, 2014, 2(29), 11054-11059. doi:10.1039/c4ta01878hhttp://dx.doi.org/10.1039/c4ta01878h
Luo Y. F.; Zhang Y.; Zhao Y.; Fang X.; Ren J.; Weng W.; Jiang Y. S.; Sun H.; Wang B. J.; Cheng X. L.; Peng H. S. Aligned carbon nanotube/molybdenum disulfide hybrids for effective fibrous supercapacitors and lithium ion batteries. J. Mater. Chem. A, 2015, 3(34), 17553-17557. doi:10.1039/c5ta04457jhttp://dx.doi.org/10.1039/c5ta04457j
Rao J. Y.; Liu N. S.; Li L. Y.; Su J.; Long F.; Zou Z. G.; Gao Y. H. A high performance wire-shaped flexible lithium-ion battery based on silicon nanoparticles within polypyrrole/twisted carbon fibers. RSC Adv., 2017, 7(43), 26601-26607. doi:10.1039/c7ra02051ahttp://dx.doi.org/10.1039/c7ra02051a
Zhang Y.; Bai W. Y.; Cheng X. L.; Ren J.; Weng W.; Chen P. N.; Fang X.; Zhang Z. T.; Peng H. S. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew. Chem. Int. Ed., 2014, 53(52), 14564-14568. doi:10.1002/anie.201409366http://dx.doi.org/10.1002/anie.201409366
Wang X. S.; Pan Z. H.; Yang J.; Lyu Z. Y.; Zhong Y. T.; Zhou G. M.; Qiu Y. C.; Zhang Y. G.; Wang J.; Li W. S. Stretchable fiber-shaped lithium metal anode. Energy Storage Mater., 2019, 22, 179-184. doi:10.1016/j.ensm.2019.01.013http://dx.doi.org/10.1016/j.ensm.2019.01.013
Xu X. J.; Xie S. L.; Zhang Y.; Peng H. S. The rise of fiber electronics. Angew. Chem. Int. Ed., 2019, 58(39), 13643-13653. doi:10.1002/anie.201902425http://dx.doi.org/10.1002/anie.201902425
Chen C.; Feng J.; Li J.; Guo Y.; Shi X.; Peng H. Functional fiber materials to smart fiber devices. Chem. Rev., 2023, 123(2), 613-662. doi:10.1021/acs.chemrev.2c00192http://dx.doi.org/10.1021/acs.chemrev.2c00192
Harrison D.; Qiu F. L.; Fyson J.; Xu Y. M.; Evans P.; Southee D. A coaxial single fibre supercapacitor for energy storage. Phys. Chem. Chem. Phys., 2013, 15(29), 12215-12219. doi:10.1039/c3cp52036fhttp://dx.doi.org/10.1039/c3cp52036f
Tang Z. H.; Jia S. H.; Wang F.; Bian C. S.; Chen Y. Y.; Wang Y. L.; Li B. Highly stretchable core-sheath fibers via wet-spinning for wearable strain sensors. ACS Appl. Mater. Interfaces, 2018, 10(7), 6624-6635. doi:10.1021/acsami.7b18677http://dx.doi.org/10.1021/acsami.7b18677
Gao Y.; Yu G. H.; Shu T.; Chen Y. Q.; Yang W. Z.; Liu Y.; Long J.; Xiong W.; Xuan F. Z. 3D-printed coaxial fibers for integrated wearable sensor skin. Adv. Mater. Technol., 2019, 4(10), 1900504. doi:10.1002/admt.201900504http://dx.doi.org/10.1002/admt.201900504
Seyedin S.; Uzun S.; Levitt A.; Anasori B.; Dion G.; Gogotsi Y.; Razal J. M. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles. Adv. Funct. Mater., 2020, 30(12), 1910504. doi:10.1002/adfm.201910504http://dx.doi.org/10.1002/adfm.201910504
Chen D.; Jiang K.; Huang T. T.; Shen G. Z. Recent advances in fiber supercapacitors: materials, device configurations, and applications. Adv. Mater., 2020, 32(5), e1901806. doi:10.1002/adma.201901806http://dx.doi.org/10.1002/adma.201901806
Zhou X.; Fang S. L.; Leng X. Q.; Liu Z. F.; Baughman R. H. The power of fiber twist. Acc. Chem. Res., 2021, 54(11), 2624-2636. doi:10.1021/acs.accounts.1c00112http://dx.doi.org/10.1021/acs.accounts.1c00112
Hatzell K. B.; Boota M.; Gogotsi Y. Materials for suspension (semi-solid) electrodes for energy and water technologies. Chem. Soc. Rev., 2015, 44(23), 8664-8687. doi:10.1039/c5cs00279fhttp://dx.doi.org/10.1039/c5cs00279f
Hu M. M.; Li Z. J.; Li G. X.; Hu T.; Zhang C.; Wang X. H. All-solid-state flexible fiber-based MXene supercapacitors. Adv. Mater. Technol., 2017, 2(10), 1700143. doi:10.1002/admt.201700143http://dx.doi.org/10.1002/admt.201700143
张智涛, 张晔, 李一明, 彭慧胜. 新型纤维状能源器件的发展和思考. 高分子学报, 2016, (10), 1284-1299. doi:10.11777/j.issn1000-3304.2016.16185http://dx.doi.org/10.11777/j.issn1000-3304.2016.16185
Yu Z. N.; Thomas J. Energy storing electrical cables: integrating energy storage and electrical conduction. Adv. Mater., 2014, 26(25), 4279-4285. doi:10.1002/adma.201400440http://dx.doi.org/10.1002/adma.201400440
Yu D. S.; Qian Q. H.; Wei L.; Jiang W. C.; Goh K.; Wei J.; Zhang J.; Chen Y. Emergence of fiber supercapacitors. Chem. Soc. Rev., 2015, 44(3), 647-662. doi:10.1039/c4cs00286ehttp://dx.doi.org/10.1039/c4cs00286e
Kishore R. Electrical conductivity of metals. Phys. Status Solidi B, 1968, 26(1), 133-138. doi:10.1002/pssb.19680260112http://dx.doi.org/10.1002/pssb.19680260112
Dong X. L.; Guo Z. Y.; Song Y. F.; Hou M. Y.; Wang J. Q.; Wang Y. G.; Xia Y. Y. Flexible and wire-shaped micro-supercapacitor based on Ni(OH)2-nanowire and ordered mesoporous carbon electrodes. Adv. Funct. Mater., 2014, 24(22), 3405-3412. doi:10.1002/adfm.201304001http://dx.doi.org/10.1002/adfm.201304001
Zhang L. H.; Qin X. Y.; Zhao S. Q.; Wang A.; Luo J.; Wang Z. L.; Kang F. Y.; Lin Z. Q.; Li B. H. Advanced matrixes for binder-free nanostructured electrodes in lithium-ion batteries. Adv. Mater., 2020, 32(24), e1908445. doi:10.1002/adma.201908445http://dx.doi.org/10.1002/adma.201908445
He J. Q.; Lu C. H.; Jiang H. B.; Han F.; Shi X.; Wu J. X.; Wang L. Y.; Chen T. Q.; Wang J. J.; Zhang Y.; Yang H.; Zhang G. Q.; Sun X. M.; Wang B. J.; Chen P. N.; Wang Y. G.; Xia Y. Y.; Peng H. S. Scalable production of high-performing woven lithium-ion fibre batteries. Nature, 2021, 597(7874), 57-63. doi:10.1038/s41586-021-03772-0http://dx.doi.org/10.1038/s41586-021-03772-0
Sun H. T.; Zhu J.; Baumann D.; Peng L. L.; Xu Y. X.; Shakir I.; Huang Y.; Duan X. F. Hierarchical 3D electrodes for electrochemical energy storage. Nat. Rev. Mater., 2019, 4(1), 45-60. doi:10.1038/s41578-018-0069-9http://dx.doi.org/10.1038/s41578-018-0069-9
Zhang X. H.; Lu W. B.; Zhou G. H.; Li Q. W. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics. Adv. Mater., 2020, 32(5), e1902028. doi:10.1002/adma.201902028http://dx.doi.org/10.1002/adma.201902028
Li S.; Zhang X. H.; Zhao J. N.; Meng F. C.; Xu G.; Yong Z. Z.; Jia J. J.; Zhang Z. G.; Li Q. W. Enhancement of carbon nanotube fibres using different solvents and polymers. Compos. Sci. Technol., 2012, 72(12), 1402-1407. doi:10.1016/j.compscitech.2012.05.013http://dx.doi.org/10.1016/j.compscitech.2012.05.013
Bai Y. X.; Zhang R. F.; Ye X.; Zhu Z. X.; Xie H. H.; Shen B. Y.; Cai D. L.; Liu B. F.; Zhang C. X.; Jia Z.; Zhang S. L.; Li X. D.; Wei F. Carbon nanotube bundles with tensile strength over 80 GPa. Nat. Nanotechnol., 2018, 13(7), 589-595. doi:10.1038/s41565-018-0141-zhttp://dx.doi.org/10.1038/s41565-018-0141-z
Li Q. W.; Li Y.; Zhang X. F.; Chikkannanavar S. B.; Zhao Y. H.; Dangelewicz A. M.; Zheng L. X.; Doorn S. K.; Jia Q. X.; Peterson D. E.; Arendt P. N.; Zhu Y. T. Structure-dependent electrical properties of carbon nanotube fibers. Adv. Mater., 2007, 19(20), 3358-3363. doi:10.1002/adma.200602966http://dx.doi.org/10.1002/adma.200602966
Pan Z. Y.; Sun H.; Pan J.; Zhang J.; Wang B. J.; Peng H. S. The creation of hollow walls in carbon nanotubes for high-performance lithium ion batteries. Carbon, 2018, 133, 384-389. doi:10.1016/j.carbon.2018.03.021http://dx.doi.org/10.1016/j.carbon.2018.03.021
Sun X. M.; Sun H.; Li H. P.; Peng H. S. Developing polymer composite materials: carbon nanotubes or graphene? Adv. Mater., 2013, 25(37), 5153-5176. doi:10.1002/adma.201301926http://dx.doi.org/10.1002/adma.201301926
Zhu Y. W.; Murali S.; Cai W. W.; Li X. S.; Suk J. W.; Potts J. R.; Ruoff R. S. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater., 2010, 22(35), 3906-3924. doi:10.1002/adma.201001068http://dx.doi.org/10.1002/adma.201001068
Cheng H. H.; Hu C. G.; Zhao Y.; Qu L. T. Graphene fiber: a new material platform for unique applications. NPG Asia Mater., 2014, 6(7), e113. doi:10.1038/am.2014.48http://dx.doi.org/10.1038/am.2014.48
Fang B.; Chang D.; Xu Z.; Gao C. A review on graphene fibers: expectations, advances, and prospects. Adv. Mater., 2020, 32(5), e1902664. doi:10.1002/adma.201902664http://dx.doi.org/10.1002/adma.201902664
Tian Q. S.; Xu Z.; Liu Y. J.; Fang B.; Peng L.; Xi J. B.; Li Z.; Gao C. Dry spinning approach to continuous graphene fibers with high toughness. Nanoscale, 2017, 9(34), 12335-12342. doi:10.1039/c7nr03895jhttp://dx.doi.org/10.1039/c7nr03895j
Frank E.; Steudle L. M.; Ingildeev D.; Spörl J. M.; Buchmeiser M. R. Carbon fibers: Precursor systems, processing, structure, and properties. Angew. Chem. Int. Ed., 2014, 53(21), 5262-5298. doi:10.1002/anie.201306129http://dx.doi.org/10.1002/anie.201306129
Chen S. H.; Qiu L.; Cheng H. M. Carbon-based fibers for advanced electrochemical energy storage devices. Chem. Rev., 2020, 120(5), 2811-2878. doi:10.1021/acs.chemrev.9b00466http://dx.doi.org/10.1021/acs.chemrev.9b00466
Nishide H.; Oyaizu K. Toward flexible batteries. Science, 2008, 319(5864), 737-738. doi:10.1126/science.1151831http://dx.doi.org/10.1126/science.1151831
Muench S.; Wild A.; Friebe C.; Häupler B.; Janoschka T.; Schubert U. S. Polymer-based organic batteries. Chem. Rev., 2016, 116(16), 9438-9484. doi:10.1021/acs.chemrev.6b00070http://dx.doi.org/10.1021/acs.chemrev.6b00070
Sun G. Z.; Zheng L. X.; An J.; Pan Y. Z.; Zhou J. Y.; Zhan Z. Y.; Pang J. H. L.; Chua C. K.; Leong K. F.; Li L. Clothing polymer fibers with well-aligned and high-aspect ratio carbon nanotubes. Nanoscale, 2013, 5(7), 2870-2874. doi:10.1039/c3nr34208ehttp://dx.doi.org/10.1039/c3nr34208e
Yang Z. B.; Deng J.; Chen X. L.; Ren J.; Peng H. S. A highly stretchable, fiber-shaped supercapacitor. Angew. Chem. Int. Ed., 2013, 52(50), 13453-13457. doi:10.1002/anie.201307619http://dx.doi.org/10.1002/anie.201307619
Kang T. J.; Choi A.; Kim D. H.; Jin K.; Seo D. K.; Jeong D. H.; Hong S. H.; Park Y. W.; Kim Y. H. Electromechanical properties of CNT-coated cotton yarn for electronic textile applications. Smart Mater. Struct., 2011, 20(1), 015004. doi:10.1088/0964-1726/20/1/015004http://dx.doi.org/10.1088/0964-1726/20/1/015004
Ma R. J.; Lee J. Y.; Choi D.; Moon H.; Baik S. Knitted fabrics made from highly conductive stretchable fibers. Nano Lett., 2014, 14(4), 1944-1951. doi:10.1021/nl404801thttp://dx.doi.org/10.1021/nl404801t
Zhang Y.; Jiao Y. D.; Lu L. J.; Wang L.; Chen T. Q.; Peng H. S. An ultraflexible silicon-oxygen battery fiber with high energy density. Angew. Chem. Int. Ed., 2017, 56(44), 13741-13746. doi:10.1002/anie.201707840http://dx.doi.org/10.1002/anie.201707840
Cheng X. L.; Fang X.; Chen P. N.; Doo S. G.; Son I. H.; Huang X. L.; Zhang Y.; Weng W.; Zhang Z. T.; Deng J.; Sun X. M.; Peng H. S. Designing one-dimensional supercapacitors in a strip shape for high performance energy storage fabrics. J. Mater. Chem. A, 2015, 3(38), 19304-19309. doi:10.1039/c5ta06317ehttp://dx.doi.org/10.1039/c5ta06317e
Li G. X.; Liu Z.; Huang Q. Q.; Gao Y.; Regula M.; Wang D. W.; Chen L. Q.; Wang D. H. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat. Energy, 2018, 3(12), 1076-1083. doi:10.1038/s41560-018-0276-zhttp://dx.doi.org/10.1038/s41560-018-0276-z
Randau S.; Weber D. A.; Kötz O.; Koerver R.; Braun P.; Weber A.; Ivers-Tiffée E.; Adermann T.; Kulisch J.; Zeier W. G.; Richter F. H.; Janek J. Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy, 2020, 5(3), 259-270. doi:10.1038/s41560-020-0565-1http://dx.doi.org/10.1038/s41560-020-0565-1
Li M.; Gao D. Y.; Li S.; Zhou Z. W.; Zou J. H.; Tao H.; Wang L.; Xu M.; Peng J. B. Realization of highly-dense Al2O3 gas barrier for top-emitting organic light-emitting diodes by atomic layer deposition. RSC Adv., 2015, 5(127), 104613-104620. doi:10.1039/c5ra21424fhttp://dx.doi.org/10.1039/c5ra21424f
Nehm F.; Klumbies H.; Richter C.; Singh A.; Schroeder U.; Mikolajick T.; Mönch T.; Hoßbach C.; Albert M.; Bartha J. W.; Leo K.; Müller-Meskamp L. Breakdown and protection of ALD moisture barrier thin films. ACS Appl. Mater. Interfaces, 2015, 7(40), 22121-22127. doi:10.1021/acsami.5b06891http://dx.doi.org/10.1021/acsami.5b06891
Guo H. C.; Ye E. Y.; Li Z. B.; Han M. Y.; Loh X. J. Recent progress of atomic layer deposition on polymeric materials. Mater. Sci. Eng. C Mater. Biol. Appl., 2017, 70, 1182-1191. doi:10.1016/j.msec.2016.01.093http://dx.doi.org/10.1016/j.msec.2016.01.093
Jarvis K. L.; Evans P. J. Growth of thin barrier films on flexible polymer substrates by atomic layer deposition. Thin Solid Films, 2017, 624, 111-135. doi:10.1016/j.tsf.2016.12.055http://dx.doi.org/10.1016/j.tsf.2016.12.055
Le Floch P.; Meixuanzi S.; Tang J. D.; Liu J. J.; Suo Z. G. Stretchable seal. ACS Appl. Mater. Interfaces, 2018, 10(32), 27333-27343. doi:10.1021/acsami.8b08910http://dx.doi.org/10.1021/acsami.8b08910
Tanskanen A.; Karppinen M. Iron-terephthalate coordination network thin films through in-situ atomic/molecular layer deposition. Sci. Rep., 2018, 8(1), 8976. doi:10.1038/s41598-018-27124-7http://dx.doi.org/10.1038/s41598-018-27124-7
Liao M.; Wang C.; Hong Y.; Zhang Y. F.; Cheng X. L.; Sun H.; Huang X. L.; Ye L.; Wu J. X.; Shi X.; Kang X. Y.; Zhou X. F.; Wang J. W.; Li P. Z.; Sun X. M.; Chen P. N.; Wang B. J.; Wang Y. G.; Xia Y. Y.; Cheng Y. H.; Peng H. S. Industrial scale production of fibre batteries by a solution-extrusion method. Nat. Nanotechnol., 2022, 17(4), 372-377. doi:10.1038/s41565-021-01062-4http://dx.doi.org/10.1038/s41565-021-01062-4
Ye L.; Hong Y.; Liao M.; Wang B. J.; Wei D. C.; Peng H. S.; Ye L.; Hong Y.; Liao M.; Wang B.; Wei D.; Peng H. Recent advances in flexible fiber-shaped metal-air batteries. Energy Storage Mater., 2020, 28, 364-374. doi:10.1016/j.ensm.2020.03.015http://dx.doi.org/10.1016/j.ensm.2020.03.015
Zhang Y.; Wang L.; Guo Z. Y.; Xu Y. F.; Wang Y. G.; Peng H. S. High-performance lithium-air battery with a coaxial-fiber architecture. Angew. Chem. Int. Ed., 2016, 55(14), 4487-4491. doi:10.1002/anie.201511832http://dx.doi.org/10.1002/anie.201511832
Li L. H.; Chen H.; He E.; Wang L.; Ye T. T.; Lu J.; Jiao Y. D.; Wang J. C.; Gao R.; Peng H. S.; Zhang Y. High-energy-density magnesium-air battery based on dual-layer gel electrolyte. Angew. Chem. Int. Ed., 2021, 60(28), 15317-15322. doi:10.1002/anie.202104536http://dx.doi.org/10.1002/anie.202104536
Zhao Y. L.; Zhu Y. H.; Zhang X. B. Challenges and perspectives for manganese-based oxides for advanced aqueous zinc-ion batteries. InfoMat, 2020, 2(2), 237-260. doi:10.1002/inf2.12042http://dx.doi.org/10.1002/inf2.12042
Dubal D. P.; Chodankar N. R.; Kim D. H.; Gomez-Romero P. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev., 2018, 47(6), 2065-2129. doi:10.1039/c7cs00505ahttp://dx.doi.org/10.1039/c7cs00505a
Wang H.; Lu Y. F.; Nie Z. T.; Liu H. D.; Dai B. F.; Shi X. F.; Yan B.; Zhao T. C.; Zhang Z. T.; Zhu J. X.; Zhao Y. Constructing carbon nanotube hybrid fiber electrodes with unique hierarchical microcrack structure for high-voltage, ultrahigh-rate, and ultralong-life flexible aqueous zinc batteries. Small, 2022, 2206338. doi:10.1002/smll.202206338http://dx.doi.org/10.1002/smll.202206338
Zhang Y.; Wang Y. H.; Wang L.; Lo C. M.; Zhao Y.; Jiao Y. D.; Zheng G. F.; Peng H. S. A fiber-shaped aqueous lithium ion battery with high power density. J. Mater. Chem. A, 2016, 4(23), 9002-9008. doi:10.1039/c6ta03477bhttp://dx.doi.org/10.1039/c6ta03477b
Liao M.; Wang J. W.; Ye L.; Sun H.; Li P. Z.; Wang C.; Tang C. Q.; Cheng X. R.; Wang B. J.; Peng H. S. A high-capacity aqueous zinc-ion battery fiber with air-recharging capability. J. Mater. Chem. A, 2021, 9(11), 6811-6818. doi:10.1039/d1ta00803jhttp://dx.doi.org/10.1039/d1ta00803j
Xia J.; Gao R. H.; Yang Y.; Tao Z.; Han Z. Y.; Zhang S. C.; Xing Y. L.; Yang P. H.; Lu X.; Zhou G. M. TinO2n-1/MXene hierarchical bifunctional catalyst anchored on graphene aerogel toward flexible and high-energy Li-S batteries. ACS Nano, 2022, 16(11), 19133-19144. doi:10.1021/acsnano.2c08246http://dx.doi.org/10.1021/acsnano.2c08246
Fang X.; Weng W.; Ren J.; Peng H. S. A cable-shaped lithium sulfur battery. Adv. Mater., 2016, 28(3), 491-496. doi:10.1002/adma.201504241http://dx.doi.org/10.1002/adma.201504241
Lu Y. J.; Tian M. W.; Sun X. T.; Pan N.; Chen F. X.; Zhu S. F.; Zhang X. S.; Chen S. J. Highly sensitive wearable 3D piezoresistive pressure sensors based on graphene coated isotropic non-woven substrate. Compos. A Appl. Sci. Manuf., 2019, 117, 202-210. doi:10.1016/j.compositesa.2018.11.023http://dx.doi.org/10.1016/j.compositesa.2018.11.023
Shirshova N.; Qian H.; Shaffer M. S. P.; Steinke J. H. G.; Greenhalgh E. S.; Curtis P. T.; Kucernak A.; Bismarck A. Structural composite supercapacitors. Compos. A Appl. Sci. Manuf., 2013, 46, 96-107. doi:10.1016/j.compositesa.2012.10.007http://dx.doi.org/10.1016/j.compositesa.2012.10.007
Qu G. X.; Cheng J. L.; Li X. D.; Yuan D. M.; Chen P. N.; Chen X. L.; Wang B.; Peng H. S. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv. Mater., 2016, 28(19), 3646-3652. doi:10.1002/adma.201600689http://dx.doi.org/10.1002/adma.201600689
Sun H.; Xie S. L.; Li Y. M.; Jiang Y. S.; Sun X. M.; Wang B. J.; Peng H. S. Large-area supercapacitor textiles with novel hierarchical conducting structures. Adv. Mater., 2016, 28(38), 8431-8438. doi:10.1002/adma.201602987http://dx.doi.org/10.1002/adma.201602987
Khudiyev T.; Grena B.; Loke G.; Hou C.; Jang H.; Lee J.; Noel G. H.; Alain J.; Joannopoulos J.; Xu K.; Li J.; Fink Y.; Lee J. T. Thermally drawn rechargeable battery fiber enables pervasive power. Mater. Today, 2022, 52, 80-89. doi:10.1016/j.mattod.2021.11.020http://dx.doi.org/10.1016/j.mattod.2021.11.020
Chen T.; Qiu L. B.; Cai Z. B.; Gong F.; Yang Z. B.; Wang Z. S.; Peng H. S. Intertwined aligned carbon nanotube fiber based dye-sensitized solar cells. Nano Lett., 2012, 12(5), 2568-2572. doi:10.1021/nl300799dhttp://dx.doi.org/10.1021/nl300799d
Wang L.; Wang L. Y.; Zhang Y.; Pan J.; Li S. Y.; Sun X. M.; Zhang B.; Peng H. S. Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv. Funct. Mater., 2018, 28(42), 1804456. doi:10.1002/adfm.201804456http://dx.doi.org/10.1002/adfm.201804456
Shi X.; Zuo Y.; Zhai P.; Shen J. H.; Yang Y.; Gao Z.; Liao M.; Wu J. X.; Wang J. W.; Xu X. J.; Tong Q.; Zhang B.; Wang B. J.; Sun X. M.; Zhang L. H.; Pei Q. B.; Jin D. Y.; Chen P. N.; Peng H. S. Large-area display textiles integrated with functional systems. Nature, 2021, 591(7849), 240-245. doi:10.1038/s41586-021-03295-8http://dx.doi.org/10.1038/s41586-021-03295-8
Chen G. R.; Li Y. Z.; Bick M.; Chen J. Smart textiles for electricity generation. Chem. Rev., 2020, 120(8), 3668-3720. doi:10.1021/acs.chemrev.9b00821http://dx.doi.org/10.1021/acs.chemrev.9b00821
Parrilla M.; De Wael K. Wearable self-powered electrochemical devices for continuous health management. Adv. Funct. Mater., 2021, 31(50), 2107042. doi:10.1002/adfm.202107042http://dx.doi.org/10.1002/adfm.202107042
Xiao X.; Xiao X.; Zhou Y. H.; Zhao X.; Chen G. R.; Liu Z. X.; Wang Z. H.; Lu C. Y.; Hu M. L.; Nashalian A.; Shen S.; Xie K. D.; Yang W. W.; Gong Y. J.; Ding W. B.; Servati P.; Han C.; Dou S. X.; Li W. J.; Chen J. An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Sci. Adv., 2021, 7(49), 3742. doi:10.1126/sciadv.abl3742http://dx.doi.org/10.1126/sciadv.abl3742
Yang Y. X.; Wei X. F.; Zhang N. N.; Zheng J. J.; Chen X.; Wen Q.; Luo X. X.; Lee C. Y.; Liu X. H.; Zhang X. C.; Chen J.; Tao C. Y.; Zhang W.; Fan X. A non-printed integrated-circuit textile for wireless theranostics. Nat. Commun., 2021, 12(1), 4876. doi:10.1038/s41467-021-25075-8http://dx.doi.org/10.1038/s41467-021-25075-8
Yin L.; Kim K. N.; Lv J.; Tehrani F.; Lin M. Y.; Lin Z. Z.; Moon J. M.; Ma J.; Yu J. L.; Xu S.; Wang J. A self-sustainable wearable multi-modular E-textile bioenergy microgrid system. Nat. Commun., 2021, 12(1), 1542. doi:10.1038/s41467-021-21701-7http://dx.doi.org/10.1038/s41467-021-21701-7
0
浏览量
70
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构