浏览全部资源
扫码关注微信
1.广西医科大学 再生医学与医用生物资源开发应用省部共建协同创新中心 南宁 530021
2.国家纳米科学中心 中国科学院纳米生物效应与安全性重点实验室 北京 100190
[ "安红维,女,1986年生. 2011年毕业于河北科技大学,2016年获国家纳米科学中心物理化学专业博士学位;2016~2020年在中国科学院高能物理研究所从事博士后研究. 2021年至今在国家纳米科学中心担任副研究员. 2023年获得国家自然科学基金优秀青年科学基金资助、北京市科技新星. 主要研究方向为体内原位构建自组装多肽纳米药物、多肽药物在荧光术中导航及其在临床转化领域的应用. 在Nat. Commun., Angew. Chem. Int. Ed., JACS, Adv. Mater., ACS Nano等期刊上发表论文50余篇." ]
[ "王浩,男,1977年生. 2000年大学毕业于南开大学,2005年获南开大学获理学博士学位. 之后,在德国维尔茨堡大学作为洪堡研究员进行研究,2007年在美国加州大学洛杉矶分校医学院Crump分子成像研究所和加州纳米系统研究中心从事纳米技术在癌症诊断与治疗方面的研究. 2011年加入国家纳米科学中心中国科学院纳米生物效应与安全性重点实验室. 入选万人计划青年拔尖人才获得者,获国家杰出青年科学基金资助. 目前主要研究方向为医用高分子材料体. 提出了活体自组装的新理念,实现材料在病灶部位的靶向、富集和滞留. 在Nat. Commun., Angew. Chem. Int. Ed., JACS, Adv. Mater., ACS Nano等期刊上发表论文100余篇." ]
纸质出版日期:2024-05-20,
网络出版日期:2024-03-27,
收稿日期:2024-02-01,
录用日期:2024-03-06
移动端阅览
廖宇思, 梁剑箫, 温转, 蔡明泽, 宋张志, 张薿元, 安红维, 王浩. 生物医用高分子材料细胞膜表面功能化的策略与应用. 高分子学报, 2024, 55(5), 553-572
Liao, Y. S.; Liang, J. X.; Wen, Z.; Cai, M. Z.; Song, Z. Z.; Zhang, N. Y.; An, H. W.; Wang, H. Strategies and applications of cell membrane surface functionalization of polymer materials. Acta Polymerica Sinica, 2024, 55(5), 553-572
廖宇思, 梁剑箫, 温转, 蔡明泽, 宋张志, 张薿元, 安红维, 王浩. 生物医用高分子材料细胞膜表面功能化的策略与应用. 高分子学报, 2024, 55(5), 553-572 DOI: 10.11777/j.issn.1000-3304.2024.24039.
Liao, Y. S.; Liang, J. X.; Wen, Z.; Cai, M. Z.; Song, Z. Z.; Zhang, N. Y.; An, H. W.; Wang, H. Strategies and applications of cell membrane surface functionalization of polymer materials. Acta Polymerica Sinica, 2024, 55(5), 553-572 DOI: 10.11777/j.issn.1000-3304.2024.24039.
细胞膜是细胞的外层包裹结构,保护细胞内部免受外界干扰. 通过对细胞膜进行修饰,引入特定的分子或结构,可以实现对细胞命运和功能的调控,从而赋予细胞特殊的功能. 近年来,利用高分子材料在细胞膜上发生自组装的策略用于功能化修饰细胞膜表面已被广泛研究. 本文综述了利用高分子、多肽及DNA纳米材料对细胞膜进行修饰的策略,总结了其带来的包括受体寡聚化、细胞膜通透性改变以及调节细胞间通讯的生物效应以及细胞膜表面功能化的生物应用.
The cell membrane
the outer protective structure of a cell
serves to shield its internal components from external disruptions. By manipulating the cell membrane and incorporating specific molecules or structures
one can exert control over the fate and functionality of cells
thereby imbuing them with specialized functions. In recent years
the strategy of using biomacromolecules to self-assemble on cell membranes has been widely studied for functionalizing the surface of cell membranes. This paper reviews that the self-assembly of different biomacromolecules on the cell membrane surface can change the biological effects of cells and produce positive effects in tumor immunotherapy. It is elaborated that when biomacromolecular materials are self-assembled on the cell membrane
it can cause biological effects of cells
such as oligomerization of cell membrane receptor proteins to activate immune cells
changing cell membrane permeability to promote endocytosis
etc.
At the same time
its application in tumor treatment is briefly introduced
and the future development of self-assembly technology modified cell membrane surface is prospected.
细胞膜组装高分子多肽肿瘤治疗
Cell membraneSelf-assemblyPolymer materialsPeptideCancer treatment
Wu H.; Zheng L. Y.; Ling N.; Zheng L. Y.; Du Y. L.; Zhang Q.; Liu Y.; Tan W. H.; Qiu L. P. Chemically synthetic membrane receptors establish cells with artificial sense-and-respond signaling pathways. J. Am. Chem. Soc., 2023, 145(4), 2315-2321. doi:10.1021/jacs.2c10903http://dx.doi.org/10.1021/jacs.2c10903
Yang Y. X.; Wang K.; Pan Y. W.; Rao L.; Luo G. X. Engineered cell membrane-derived nanoparticles in immune modulation. Adv. Sci., 2021, 8(24), e2102330. doi:10.1002/advs.202102330http://dx.doi.org/10.1002/advs.202102330
Tulpule A.; Guan J.; Neel D. S.; Allegakoen H. R.; Lin Y. P.; Brown D.; Chou Y. T.; Heslin A.; Chatterjee N.; Perati S.; Menon S.; Nguyen T. A.; Debnath J.; Ramirez A. D.; Shi X. Y.; Yang B.; Feng S. Y.; Makhija S.; Huang B.; Bivona T. G. Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules. Cell, 2021, 184(10), 2649-2664.e18. doi:10.1016/j.cell.2021.03.031http://dx.doi.org/10.1016/j.cell.2021.03.031
Kong P.; Yu Y.; Wang L.; Dou Y. Q.; Zhang X. H.; Cui Y.; Wang H. Y.; Yong Y. T.; Liu Y. B.; Hu H. J.; Cui W.; Sun S. G.; Li B. H.; Zhang F.; Han M. Circ-Sirt1 controls NF-κB activation via sequence-specific interaction and enhancement of SIRT1 expression by binding to miR-132/212 in vascular smooth muscle cells. Nucleic Acids Res., 2019, 47(7), 3580-3593. doi:10.1093/nar/gkz141http://dx.doi.org/10.1093/nar/gkz141
Li J.; Xun K. Y.; Zheng L. Y.; Peng X. Y.; Qiu L. P.; Tan W. H. DNA-based dynamic mimicry of membrane proteins for programming adaptive cellular interactions. J. Am. Chem. Soc., 2021, 143(12), 4585-4592. doi:10.1021/jacs.0c11245http://dx.doi.org/10.1021/jacs.0c11245
Adebowale K.; Liao R.; Suja V. C.; Kapate N.; Lu A.; Gao Y. S.; Mitragotri S. Materials for cell surface engineering. Adv. Mater., 2023, 2210059. doi:10.1002/adma.202210059http://dx.doi.org/10.1002/adma.202210059
Pan X. L.; Pei J. P.; Wang A. X.; Shuai W.; Feng L.; Bu F. Q.; Zhu Y. M.; Zhang L.; Wang G.; Ouyang L. Development of small molecule extracellular signal-regulated kinases (ERKs) inhibitors for cancer therapy. Acta Pharm. Sin. B, 2022, 12(5), 2171-2192. doi:10.1016/j.apsb.2021.12.022http://dx.doi.org/10.1016/j.apsb.2021.12.022
Yang H.; Yao L. H.; Wang Y. C.; Chen G. J.; Chen H. Advancing cell surface modification in mammalian cells with synthetic molecules. Chem. Sci., 2023, 14(46), 13325-13345. doi:10.1039/d3sc04597hhttp://dx.doi.org/10.1039/d3sc04597h
Adebowale K.; Liao R.; Suja V. C.; Kapate N.; Lu A.; Gao Y. S.; Mitragotri S. Materials for cell surface engineering. Adv. Mater., 2023, 2210059. doi:10.1002/adma.202210059http://dx.doi.org/10.1002/adma.202210059
Ma J. Y.; Wang Y. X.; Huang Y.; Zhang Y.; Cui Y. X.; Kong D. M. Chemical-biological approaches for the direct regulation of cell-cell aggregation. Aggregate, 2022, 3(2), e166. doi:10.1002/agt2.166http://dx.doi.org/10.1002/agt2.166
Csizmar C. M.; Petersburg J. R.; Wagner C. R. Programming cell-cell interactions through non-genetic membrane engineering. Cell Chem. Biol., 2018, 25(8), 931-940. doi:10.1016/j.chembiol.2018.05.009http://dx.doi.org/10.1016/j.chembiol.2018.05.009
Miao L.; Wei Y. Y.; Lu X.; Jiang M.; Liu Y. X.; Li P. S.; Ren Y. X.; Zhang H.; Chen W.; Han B.; Lu W. L. Interaction of 2D nanomaterial with cellular barrier: Membrane attachment and intracellular trafficking. Adv. Drug Deliv. Rev., 2024, 204, 115131. doi:10.1016/j.addr.2023.115131http://dx.doi.org/10.1016/j.addr.2023.115131
Chai Z. L.; Ran D. N.; Lu L. W.; Zhan C. Y.; Ruan H. T.; Hu X. F.; Xie C.; Jiang K.; Li J. Y.; Zhou J. F.; Wang J.; Zhang Y. Y.; Fang R. H.; Zhang L. F.; Lu W. Y. Ligand-modified cell membrane enables the targeted delivery of drug nanocrystals to glioma. ACS Nano, 2019, 13(5), 5591-5601. doi:10.1021/acsnano.9b00661http://dx.doi.org/10.1021/acsnano.9b00661
Li Y. R.; Huo F.; Chen L. S.; Wang H. Q.; Wu J. Z.; Zhang P. W.; Feng N.; Li W.; Wang L.; Wang Y. C.; Wang X. J.; Yang X. L.; Lu Z. Q.; Mao Y.; Yan C.; Ding L.; Ju H. X. Protein-targeted glycan editing on living cells disrupts KRAS signaling. Angew. Chem. Int. Ed., 2023, 62(26), e202218148. doi:10.1002/anie.202218148http://dx.doi.org/10.1002/anie.202218148
Yang H.; Xiong Z. J.; Heng X. Y.; Niu X. M.; Wang Y. C.; Yao L. H.; Sun L. L.; Liu Z.; Chen H. Click-chemistry-mediated cell membrane glycopolymer engineering to potentiate dendritic cell vaccines. Angew. Chem. Int. Ed., 2024, 63(2), e202315782. doi:10.1002/anie.202315782http://dx.doi.org/10.1002/anie.202315782
Liu J.; Kim Y. S.; Richardson C. E.; Tom A.; Ramakrishnan C.; Birey F.; Katsumata T.; Chen S. C.; Wang C.; Wang X.; Joubert L. M.; Jiang Y. W.; Wang H. L.; Fenno L. E.; Tok J. B. H.; Pașca S. P.; Shen K.; Bao Z. N.; Deisseroth K. Genetically targeted chemical assembly of functional materials in living cells, tissues, and animals. Science, 2020, 367(6484), 1372-1376. doi:10.1126/science.aay4866http://dx.doi.org/10.1126/science.aay4866
Zhang A. Q.; Loh K. Y.; Kadur C. S.; Michalek L.; Dou J. Y.; Ramakrishnan C.; Bao Z. N.; Deisseroth K. Genetically targeted chemical assembly of polymers specifically localized extracellularly to surface membranes of living neurons. Sci. Adv., 2023, 9(32), eadi1870. doi:10.1126/sciadv.adi1870http://dx.doi.org/10.1126/sciadv.adi1870
Guo Z. Y.; Noh I.; Zhu A. T.; Yu Y. Y.; Gao W. W.; Fang R. H.; Zhang L. F. Cancer cell membrane nanodiscs for antitumor vaccination. Nano Lett., 2023, 23(17), 7941-7949. doi:10.1021/acs.nanolett.3c01775http://dx.doi.org/10.1021/acs.nanolett.3c01775
Wang M. D.; Lv G. T.; An H. W.; Zhang N. Y.; Wang H. In situ self-assembly of bispecific peptide for cancer immunotherapy. Angew. Chem. Int. Ed., 2022, 61(10), e202113649. doi:10.1002/anie.202113649http://dx.doi.org/10.1002/anie.202113649
Zhao Y. D.; An H. W.; Mamuti M.; Zeng X. Z.; Zheng R.; Yang J.; Zhou W.; Liang Y. X.; Qin G. G.; Hou D. Y.; Liu X. L.; Wang H.; Zhao Y. L.; Fang X. H. Reprogramming hypoxic tumor-associated macrophages by nanoglycoclusters for boosted cancer immunotherapy. Adv. Mater., 2023, 35(24), e2211332. doi:10.1002/adma.202211332http://dx.doi.org/10.1002/adma.202211332
Xiao W. Y.; Wang Y.; An H. W.; Hou D. Y.; Mamuti M.; Wang M. D.; Wang J.; Xu W. H.; Hu L. M.; Wang H. Click reaction-assisted peptide immune checkpoint blockade for solid tumor treatment. ACS Appl. Mater. Interfaces, 2020, 12(36), 40042-40051. doi:10.1021/acsami.0c10166http://dx.doi.org/10.1021/acsami.0c10166
Mamuti M.; Wang Y.; Zhao Y. D.; Wang J. Q.; Wang J.; Fan Y. L.; Xiao W. Y.; Hou D. Y.; Yang J.; Zheng R.; An H. W.; Wang H. A polyvalent peptide CD40 nanoagonist for targeted modulation of dendritic cells and amplified cancer immunotherapy. Adv. Mater., 2022, 34(24), e2109432. doi:10.1002/adma.202109432http://dx.doi.org/10.1002/adma.202109432
Zheng M. X.; Li Z.; Liu L. F.; Li M.; Paluzzi V. E.; Hyun Choi J.; Mao C. D. Kinetic DNA self-assembly: simultaneously co-folding complementary DNA strands into identical nanostructures. J. Am. Chem. Soc., 2021, 143(48), 20363-20367. doi:10.1021/jacs.1c09925http://dx.doi.org/10.1021/jacs.1c09925
Yang X. Q.; Yang L. J.; Yang D. L.; Li M.; Wang P. F. In situ DNA self-assembly on the cell surface drives unidirectional clustering of membrane proteins for the modulation of cell behaviors. Nano Lett., 2022, 22(8), 3410-3416. doi:10.1021/acs.nanolett.2c00680http://dx.doi.org/10.1021/acs.nanolett.2c00680
Li Z. H.; Yang M.; Shu Y.; Wang J. H. DNA hairpin self-assembly on cell membrane triggered by Dual-aptamer logic circuit for cancer cell recognition and photodynamic therapy. Sens. Actuat. B Chem., 2023, 391, 134063. doi:10.1016/j.snb.2023.134063http://dx.doi.org/10.1016/j.snb.2023.134063
Mao M.; Lin Z.; Chen L.; Zou Z. Y.; Zhang J.; Dou Q. H.; Wu J. C.; Chen J. L.; Wu M. H.; Niu L.; Fan C. H.; Zhang Y. Q. Modular DNA-origami-based nanoarrays enhance cell binding affinity through the "lock-and-key" interaction. J. Am. Chem. Soc., 2023, 145(9), 5447-5455. doi:10.1021/jacs.2c13825http://dx.doi.org/10.1021/jacs.2c13825
Li J.; Xun K. Y.; Pei K.; Liu X. J.; Peng X. Y.; Du Y. L.; Qiu L. P.; Tan W. H. Cell-membrane-anchored DNA nanoplatform for programming cellular interactions. J. Am. Chem. Soc., 2019, 141(45), 18013-18020. doi:10.1021/jacs.9b04725http://dx.doi.org/10.1021/jacs.9b04725
Du Y. L.; Lyu Y. F.; Lin J.; Ma C. R.; Zhang Q.; Zhang Y. T.; Qiu L. P.; Tan W. H. Membrane-anchored DNA nanojunctions enable closer antigen-presenting cell-T-cell contact in elevated T-cell receptor triggering. Nat. Nanotechnol., 2023, 18(7), 818-827. doi:10.1038/s41565-023-01333-2http://dx.doi.org/10.1038/s41565-023-01333-2
Henning-Knechtel A.; Knechtel J.; Magzoub M. DNA-assisted oligomerization of pore-forming toxin monomers into precisely-controlled protein channels. Nucleic Acids Res., 2017, 45(21), 12057-12068. doi:10.1093/nar/gkx990http://dx.doi.org/10.1093/nar/gkx990
Spruijt E.; Tusk S. E.; Bayley H. DNA scaffolds support stable and uniform peptide nanopores. Nat. Nanotechnol., 2018, 13(8), 739-745. doi:10.1038/s41565-018-0139-6http://dx.doi.org/10.1038/s41565-018-0139-6
Fennouri A.; List J.; Ducrey J.; Dupasquier J.; Sukyte V.; Mayer S. F.; Vargas R. D.; Pascual Fernandez L.; Bertani F.; Rodriguez Gonzalo S.; Yang J.; Mayer M. Tuning the diameter, stability, and membrane affinity of peptide pores by DNA-programmed self-assembly. ACS Nano, 2021, 15(7), 11263-11275. doi:10.1021/acsnano.0c10311http://dx.doi.org/10.1021/acsnano.0c10311
Lin Y. F.; Yang J.; Yang Q. L.; Zeng S.; Zhang J. Y.; Zhu Y. X.; Tong Y. X.; Li L.; Tan W. Q.; Chen D. H.; Sun Q. M. PTK2promotes TBKB1 and STING oligomerization and enhances the STING-TBK1 signaling. Nat. Commun., 2023, 14(1), 7567. doi:10.1038/s41467-023-43419-4http://dx.doi.org/10.1038/s41467-023-43419-4
Wu X. R.; Yang Z. H.; Wu J. F.; Han J. H. Ribosome-rescuer PELO catalyzes the oligomeric assembly of NOD-like receptor family proteins via activating their ATPase enzymatic activity. Immunity, 2023, 56(5), 926-943.e7. doi:10.1016/j.immuni.2023.02.014http://dx.doi.org/10.1016/j.immuni.2023.02.014
Sun Y.; Yang X. N.; Yang S. S.; Lyu Y. Z.; Zhang B.; Liu K. W.; Li N.; Cui J. C.; Huang G. X.; Liu C. L.; Xu J.; Mi J. Q.; Chen Z.; Fan X. H.; Chen S. J.; Chen S. Antigen-induced chimeric antigen receptor multimerization amplifies on-tumor cytotoxicity. Signal Transduct. Target. Ther., 2023, 8(1), 445. doi:10.1038/s41392-023-01686-zhttp://dx.doi.org/10.1038/s41392-023-01686-z
Wang Z. M.; Xie S. T.; Wu L. M.; Chen F. M.; Qiu L. P.; Tan W. H. Aptamer-functionalized nanodevices for dynamic manipulation of membrane receptor signaling in living cells. Nano Lett., 2022, 22(19), 7853-7859. doi:10.1021/acs.nanolett.2c02522http://dx.doi.org/10.1021/acs.nanolett.2c02522
Zhang L.; Jing D.; Jiang N.; Rojalin T.; Baehr C. M.; Zhang D. L.; Xiao W. W.; Wu Y.; Cong Z. Q.; Li J. J.; Li Y. P.; Wang L.; Lam K. S. Transformable peptide nanoparticles arrest HER2 signalling and cause cancer cell death in vivo. Nat. Nanotechnol., 2020, 15(2), 145-153. doi:10.1038/s41565-019-0626-4http://dx.doi.org/10.1038/s41565-019-0626-4
Guo R. C.; Zhang X. H.; Fan P. S.; Song B. L.; Li Z. X.; Duan Z. Y.; Qiao Z. Y.; Wang H. In vivo self-assembly induced cell membrane phase separation for improved peptide drug internalization. Angew. Chem. Int. Ed., 2021, 60(47), 25128-25134. doi:10.1002/anie.202111839http://dx.doi.org/10.1002/anie.202111839
Yang J.; Zheng R.; Mamuti M.; Hou D. Y.; Zhao Y. D.; An H. W.; Wang H.; Zhao Y. L. Oncolytic peptide nanomachine circumvents chemo resistance of renal cell carcinoma. Biomaterials, 2022, 284, 121488. doi:10.1016/j.biomaterials.2022.121488http://dx.doi.org/10.1016/j.biomaterials.2022.121488
De Belly H.; Paluch E. K.; Chalut K. J. Interplay between mechanics and signalling in regulating cell fate. Nat. Rev. Mol. Cell Biol., 2022, 23(7), 465-480. doi:10.1038/s41580-022-00472-zhttp://dx.doi.org/10.1038/s41580-022-00472-z
Kohout V. R.; Wardzala C. L.; Kramer J. R. Synthesis and biomedical applications of mucin mimic materials. Adv. Drug Deliv. Rev., 2022, 191, 114540. doi:10.1016/j.addr.2022.114540http://dx.doi.org/10.1016/j.addr.2022.114540
Hyun J. Y.; Pai J.; Shin I. The glycan microarray story from construction to applications. Acc. Chem. Res., 2017, 50(4), 1069-1078. doi:10.1021/acs.accounts.7b00043http://dx.doi.org/10.1021/acs.accounts.7b00043
Kuo J. C. H.; Gandhi J. G.; Zia R. N.; Paszek M. J. Physical biology of the cancer cell glycocalyx. Nat. Phys., 2018, 14(7), 658-669. doi:10.1038/s41567-018-0186-9http://dx.doi.org/10.1038/s41567-018-0186-9
Zhong Y. H.; Xu L. J.; Yang C.; Xu L.; Wang G. Y.; Guo Y. N.; Cheng S. T.; Tian X.; Wang C. J.; Xie R.; Wang X. J.; Ding L.; Ju H. X. Site-selected in situ polymerization for living cell surface engineering. Nat. Commun., 2023, 14(1), 7285. doi:10.1038/s41467-023-43161-xhttp://dx.doi.org/10.1038/s41467-023-43161-x
Mierke C. T. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells. Rep. Prog. Phys., 2019, 82(6), 064602. doi:10.1088/1361-6633/ab1628http://dx.doi.org/10.1088/1361-6633/ab1628
Guo P.; Wang D.; Zhang S. M.; Cheng D.; Wu S. Y.; Zuo X. B.; Jiang Y. B.; Jiang T. Reassembly of peptide nanofibrils on live cell surfaces promotes cell-cell interactions. Nano Lett., 2023, 23(14), 6386-6392. doi:10.1021/acs.nanolett.3c01100http://dx.doi.org/10.1021/acs.nanolett.3c01100
Guo Z. Z.; Zhang L. L.; Yang Q. X.; Peng R. Z.; Yuan X.; Xu L. J.; Wang Z. M.; Chen F. M.; Huang H. D.; Liu Q. L.; Tan W. H. Manipulation of multiple cell-cell interactions by tunable DNA scaffold networks. Angew. Chem. Int. Ed., 2022, 61(7), e202111151. doi:10.1002/anie.202111151http://dx.doi.org/10.1002/anie.202111151
Barata P. C.; Rini B. I. Treatment of renal cell carcinoma: current status and future directions. CA Cancer J. Clin., 2017, 67(6), 507-524. doi:10.3322/caac.21411http://dx.doi.org/10.3322/caac.21411
Feng Z.; Wang H. M.; Wang S. Y.; Zhang Q.; Zhang X. X.; Rodal A. A.; Xu B. Enzymatic assemblies disrupt the membrane and target endoplasmic reticulum for selective cancer cell death. J. Am. Chem. Soc., 2018, 140(30), 9566-9573. doi:10.1021/jacs.8b04641http://dx.doi.org/10.1021/jacs.8b04641
Jeena M. T.; Palanikumar L.; Go E. M.; Kim I.; Kang M. G.; Lee S.; Park S.; Choi H.; Kim C.; Jin S. M.; Bae S. C.; Rhee H. W.; Lee E.; Kwak S. K.; Ryu J. H. Mitochondria localization induced self-assembly of peptide amphiphiles for cellular dysfunction. Nat. Commun., 2017, 8(1), 26. doi:10.1038/s41467-017-00047-zhttp://dx.doi.org/10.1038/s41467-017-00047-z
Wang H. M.; Feng Z.; Del Signore S. J.; Rodal A. A.; Xu B. Active probes for imaging membrane dynamics of live cells with high spatial and temporal resolution over extended time scales and areas. J. Am. Chem. Soc., 2018, 140(10), 3505-3509. doi:10.1021/jacs.7b13307http://dx.doi.org/10.1021/jacs.7b13307
Wang Z. Q.; An H. W.; Hou D. Y.; Wang M. D.; Zeng X. Z.; Zheng R.; Wang L.; Wang K. L.; Wang H.; Xu W. H. Addressable peptide self-assembly on the cancer cell membrane for sensitizing chemotherapy of renal cell carcinoma. Adv. Mater., 2019, 31(11), e1807175. doi:10.1002/adma.201807175http://dx.doi.org/10.1002/adma.201807175
Wang Q.; Cao H. M.; Hou X. X.; Wang D. Y.; Wang Z. L.; Shang Y.; Zhang S. Q.; Liu J. J.; Ren C. H.; Liu J. F. Cancer stem-like cells-oriented surface self-assembly to conquer radioresistance. Adv. Mater., 2023, 35(38), e2302916. doi:10.1002/adma.202302916http://dx.doi.org/10.1002/adma.202302916
Chen L.; Sun X. Q.; Cheng K.; Topham P. D.; Xu M. M.; Jia Y. F.; Dong D. H.; Wang S.; Liu Y.; Wang L. G.; Yu Q. Q. Temperature-regulating phase change fiber scaffold toward mild photothermal-chemotherapy. Adv. Fiber Mater., 2022, 4(6), 1669-1684. doi:10.1007/s42765-022-00199-8http://dx.doi.org/10.1007/s42765-022-00199-8
Long Z.; Hu J. J.; Yuan L. Z.; Duan C.; Dai J.; Zhen S. J.; Zhao Z. J.; Lou X. D.; Xia F. A cell membrane-anchored nanoassembly with self-reporting property for enhanced second near-infrared photothermal therapy. Nano Today, 2021, 41, 101312. doi:10.1016/j.nantod.2021.101312http://dx.doi.org/10.1016/j.nantod.2021.101312
Jiang Y.; Krishnan N.; Zhou J. R.; Chekuri S.; Wei X. L.; Kroll A. V.; Yu C. L.; Duan Y. O.; Gao W. W.; Fang R. H.; Zhang L. F. Engineered cell-membrane-coated nanoparticles directly present tumor antigens to promote anticancer immunity. Adv. Mater., 2020, 32(30), 2001808. doi:10.1002/adma.202001808http://dx.doi.org/10.1002/adma.202001808
Xiao P.; Wang J.; Zhao Z. T.; Liu X. C.; Sun X. S.; Wang D. G.; Li Y. P. Engineering nanoscale artificial antigen-presenting cells by metabolic dendritic cell labeling to potentiate cancer immunotherapy. Nano Lett., 2021, 21(5), 2094-2103. doi:10.1021/acs.nanolett.0c04783http://dx.doi.org/10.1021/acs.nanolett.0c04783
Lv G. T.; Chen Q. H.; Wang M. D.; Ye X. W.; Liu Y. X.; Liu S.; Wang Q. T.; Lai W. J.; Yang P. P.; Wang H. Inter-crosslinking peptide augments 4-1BB receptor clustering for cancer immunotherapy. Nano Today, 2023, 53, 102035. doi:10.1016/j.nantod.2023.102035http://dx.doi.org/10.1016/j.nantod.2023.102035
Taylor M. J.; Husain K.; Gartner Z. J.; Mayor S.; Vale R. D. A DNA-based T cell receptor reveals a role for receptor clustering in ligand discrimination. Cell, 2017, 169(1), 108-119.e20. doi:10.1016/j.cell.2017.03.006http://dx.doi.org/10.1016/j.cell.2017.03.006
Ma P. Q.; Liu T. X.; Li H. D.; Yin B. C.; Ye B. C. Nano-biohybrid DNA engager that reprograms the T-cell receptor. J. Am. Chem. Soc., 2022, 144(49), 22458-22469. doi:10.1021/jacs.2c05903http://dx.doi.org/10.1021/jacs.2c05903
0
浏览量
797
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构