浏览全部资源
扫码关注微信
北京化工大学 化工资源有效利用国家重点实验室 北京 100029
E-mail: wuyx@mail.buct.edu.cn Yi-xian Wu, E-mail: wuyx@ mail.buct.edu.cn
纸质出版日期:2018-5,
收稿日期:2017-8-27,
修回日期:2017-9-29,
扫 描 看 全 文
朱寒, 答迅, 卢晨, 吴一弦. 聚丁二烯/二氧化硅杂化新材料等温结晶动力学及结晶形态的研究[J]. 高分子学报, 2018,0(5):656-664.
Han Zhu, Xun Da, Chen Lu, Yi-xian Wu. Isothermal Crystallization Kinetics and Crystal Morphology of Polybutadiene/Silica Hybrid Materials[J]. Acta Polymerica Sinica, 2018,0(5):656-664.
朱寒, 答迅, 卢晨, 吴一弦. 聚丁二烯/二氧化硅杂化新材料等温结晶动力学及结晶形态的研究[J]. 高分子学报, 2018,0(5):656-664. DOI: 10.11777/j.issn1000-3004.2017.170241.
Han Zhu, Xun Da, Chen Lu, Yi-xian Wu. Isothermal Crystallization Kinetics and Crystal Morphology of Polybutadiene/Silica Hybrid Materials[J]. Acta Polymerica Sinica, 2018,0(5):656-664. DOI: 10.11777/j.issn1000-3004.2017.170241.
研究了所合成的新型高顺式聚丁二烯键合纳米二氧化硅杂化材料(PB-Si)的顺式-1
4微观结构、特性黏数([
η
])、微观形态及热稳定性与键合纳米二氧化硅含量的关系等,并采用示差扫描量热仪(DSC)和配有在线冷热台的偏光显微镜(POM)研究了杂化材料PB-Si中SiO
2
含量及微观链结构特点对其低温下等温结晶动力学及结晶形态、球晶增长速率的影响. 结果表明:当SiO
2
含量小于2.5%时,杂化材料PB-Si的特性黏数和顺式-1
4结构含量均基本保持不变,短支链结构的杂化材料(PB-Si-Ni)的顺式-1
4结构含量约为96.6%,高度线性链结构的杂化材料(PB-Si-Nd)的顺式-1
4结构含量约为98.6%,热稳定性均随着SiO
2
含量增加而有所提高;在PB顺式-1
4微观结构及SiO
2
结合含量基本相同的前提下,与共混物PB/SiO
2
相比,杂化材料PB-Si具有更快的结晶速率,且随着杂化材料PB-Si中SiO
2
结合量增大,其结晶速率加快,半结晶时间(
t
1/2
)缩短;若杂化材料中顺式-1
4微观结构含量和SiO
2
结合量同时增加,杂化材料PB-Si的结晶速率进一步加快;在顺式结构含量及SiO
2
含量确定的情况下,聚合物的拓扑结构对其结晶速率也有明显影响,高度线性结构(PB-Si-Nd)比短支链结构(PB-Si-Ni)的杂化材料也具有更快的结晶速率;杂化材料PB-Si在低温等温结晶过程中均呈现三维球晶的生长方式,Avrami指数(
n
)在2.0 ~ 3.0之间,球晶增长速率也随SiO
2
结合量增加而加快.
Effect of SiO
2
content on
cis
-1
4 microstructure content of butadiene (Bd) units
intrinsic viscosity ([
η
]) and thermal stability of hybrid materials (PB-Si) were studied
in which SiO
2
nanoparticles were covalently attached and pendants along high
cis
polybutadiene (PB) macromolecular chains. Isothermal crystallization characteristics and SiO
2
dispersion in PB matrix of PB-Si hybrid and PB/SiO
2
blend (PB/Si) with the same SiO
2
contents were conducted. The microstructure of Bd units in PB-Si was characterized by Fourier transform infrared spectroscopy (FTIR) and the
cis
-1
4 content was determined based on the characteristic absorption in FTIR spectrum. The SiO
2
content of PB-Si was measured by thermal gravimetric analysis (TGA). The intrinsic viscosity of PB-Si in toluene was tested by Ubbelohde viscometer. Effects of SiO
2
content and microstructure (
cis
-1
4 configuration) on the isothermal crystallization kinetics
crystal morphology and spherulite growth rate of the hybrid materials at low temperatures were investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM) equipped with
in situ
heating and cooling device. The results show that the intrinsic viscosity and the
cis
-1
4 contents of Bd units of PB-Si remained almost the same
and thermal stability could be improved with increasing SiO
2
content in the materials when SiO
2
content was less than 2.5%. For two series of PB-Si-Ni and PB-Si-Nd hybrids
their
cis
-1
4 contents were determined to be around 96.6% and 98.6% respectively. PB-Si hybrid materials exhibited a much higher crystallization rate compared to PB/Si blends by keeping the
cis
-1
4 contents and SiO
2
content at the same. The crystallization rate increased by introducing a small amount of covalently linked SiO
2
nanoparticle pendants along the macromolecular chains. The crystallization of PB-Si hybrid materials could be accelerated and the half-crystallization time (
t
1/2
) decreased with increasing SiO
2
content. PB-Si-Nd hybrid materials with highly linear chains possessed a higher crystallization rate than PB-Si-Ni with short branched chains by keeping
cis
-1
4 content and SiO
2
at the same. The crystallization rate of PB-Si-Nd hybrid materials could be further increased with increasing both SiO
2
and
cis
-1
4 contents. The Avrami exponents (
n
) for PB-Si hybrid materials with various topological structures were determined to be in the range of 2.0 − 3.0
which indicated a three-dimensional spherulite growth of PB-Si under isothermal condition at low crystallization temperature. The growth rate of spherulites increased with the increase in SiO
2
content while keeping other conditions almost the same. The crystallization rate could increase with increased
cis
-1
4 content
linearity of chain structure and SiO
2
content.
高顺式聚丁二烯杂化材料链结构等温结晶动力学
High cis polybutadieneHybrid materialsChain structureIsothermal crystallization kinetics
Zhu H, Chen P, Yang C F, Wu Y X . Macromol React Eng , 2015 . 9 ( 5 ): 453 - 461 . DOI:10.1002/mren.v9.5http://doi.org/10.1002/mren.v9.5 .
Xiao Daling(肖大玲), Wu Shuhua(吴淑华). Tire Industry(轮胎工业), 2014, 34(7): 387-394
Hang Liping(黄丽萍). Tire Industry(轮胎工业), 2015, 35: 96-96
Li Huating(李花婷), Cai Shangmai(蔡尚脉), Wang Qingcai(王清才), Zhou Zhifeng(周志峰), Chen Mingxing(陈名行). Rubber Sci Technol(橡胶科技), 2014, 12(4) : 5-9
Zhu Han(朱寒), Zhang Shu(张树), Wu Yixian(吴一弦). Chin Sci Bull (科学通报), 2016, 61(31): 3326-3337
Zhu Han(朱寒), Zuo Xialong(左夏龙), Zhang Shu(张树), Ma Xiaoli(马晓丽), Liu Yanfei(刘雁飞), Wu Yixian(吴一弦). Chin Polym Bull (高分子通报), 2014, (5): 65-87
Yang Qingzhi(杨清芝). Modern Rubber Technology(现代橡胶工艺学). Beijing(北京): China Petrochemical Press(中国石化出版社), 2004
Mitchell J C . Polymer , 1967 . 8 ( 2 ): 369 - 379.
Yang Changfeng(杨昌风), Zhu Han(朱寒), Wu Yixian(吴一弦). Acta Polymerica Sinica(高分子学报), 2016, (12): 1743-1751
Cheng T L, Su A C . Macromolecules , 1993 . 26 ( 26 ): 7161 - 7166 . DOI:10.1021/ma00078a008http://doi.org/10.1021/ma00078a008 .
Cheng T L, Su A C . Polymer , 1995 . 36 ( 1 ): 73 - 80 . DOI:10.1016/0032-3861(95)90677-Thttp://doi.org/10.1016/0032-3861(95)90677-T .
Zhang Hongfang(张宏放), Mo Zhishen(莫志深), Wei Xuejun(魏学军), Zhang Shuxiang(张书香), Han Ping(韩平). Acta Polymerica Sinica(高分子学报), 1988, (6): 416-420
Yu Fusheng(余赋生), Xu Guiying(徐桂英), Zhang Shicun(张世村), Song Xiangyu(宋襄玉). Chin J Appl Chem(应用化学), 1983, 1(1): 58-64
Xu Yang(徐洋), Yu Fusheng(余赋生), Zhou Enle(周恩乐), Qian Baogong(钱保功). Chin J Appl Chem(应用化学), 1987, 4(1): 48-52
Xu Yang(徐洋), Zhou Enle(周恩乐), Yu Fusheng(余赋生), Qian Baogong(钱保功). Chin J Appl Chem(应用化学), 1984, 1(4): 51-56
Hashimoto T, Saijo K, Kosc M, Kawai H, Wasiak A, Ziabicki A . Macromolecules , 1985 . 18 ( 3 ): 472 - 482 . DOI:10.1021/ma00145a029http://doi.org/10.1021/ma00145a029 .
Saijo K, Zhu Y P, Hashimoto T, Wasiak A, Brzostowski N . J App Polym Sci , 2007 . 105 ( 1 ): 137 - 157 . DOI:10.1002/(ISSN)1097-4628http://doi.org/10.1002/(ISSN)1097-4628 .
Petermann J, Xu Y . Colloid Polym Sci , 1991 . 269 ( 5 ): 455 - 459 . DOI:10.1007/BF00655882http://doi.org/10.1007/BF00655882 .
Nakajima N, Yamaguchi Y . J Appl Polym Sci , 1996 . 62 ( 13 ): 2329 - 2339 . DOI:10.1002/(ISSN)1097-4628http://doi.org/10.1002/(ISSN)1097-4628 .
Doan V A, Nobukawa S, Ohtsubo S, Tada T, Yamaguchi M . J Appl Polym Sci , 2013 . 128 ( 3 ): 1848 - 1853.
Wu Yixian(吴一弦), Zhu Han(朱寒), Da Xun(答迅). CN patent, 201611231608.0. 2016-12-28
Shen Zhiquan(沈之荃), Song Xiangyu(宋襄玉), Xiao Shuxiu(肖淑秀), Yang Jipo(杨吉坡), Kan Xianglan(阚香兰). Sci China Ser B(中国科学B辑), 1982, 25(2): 124-136
Gao Yanhong(高红艳), Ma Fengyun(马凤云), Song Yuping(宋玉萍), Wang Xuefeng(王雪枫), Wang Fengjiang(王凤江). Chin Syn Rubber Ind(合成橡胶工业), 2010, 33(2): 101-105
Wei Jinzhu(魏金柱), Liao Yuzhen(廖玉珍), Hu Zhenya(胡振亚). Chin Syn Rubber Ind(合成橡胶工业), 1983, 1(5): 342-346
Panicker S S, Ninan K N . Thermochimica Acta , 1997 . 290 ( 2 ): 191 - 197 . DOI:10.1016/S0040-6031(96)03083-3http://doi.org/10.1016/S0040-6031(96)03083-3 .
Dong Languo(董兰国), Zong Chengzhong(宗成中), Dai Zhen(戴珍), Ning Lihong(宁丽红). Chem Propell Polym Mater (化学推进剂与高分子材料), 2005, 3(4): 14-18
Yao Hong(姚红). Crystallization, structure and morphologies as well as mechanical properties of cis-1,4-polybutadiene/polyethylene blends (顺丁橡胶/聚乙烯共混物的结晶、形态结构和力学性能研究). Doctoral Dissertation of Beijing University of Chemical Technology(北京化工大学博士学位论文), 2016
Hu Wenbing(胡文兵). Principles of Polymer Crystallization(高分子结晶学原理). Beijing(北京): Chemical Industry Press(化学工业出版社), 2013. 1-15
0
浏览量
25
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构