浏览全部资源
扫码关注微信
华东理工大学材料科学与工程学院 上海市先进聚合物重点实验室 上海 200237
林宇,E-mail:linyu@ecust.edu.cn Yu Lin,E-mail:linyu@ecust.edu.cn
吴国章,E-mail:wgz@ecust.edu.cn Guo-zhang Wu,E-mail:wgz@ecust.edu.cn
纸质出版日期:2016-11,
收稿日期:2016-3-15,
修回日期:2016-4-20,
扫 描 看 全 文
刘朗萍, 林宇, 管爱国, 吴国章. 细乳液聚合制备接枝纳米粒子及其在聚合物基体中的空间分布调控[J]. 高分子学报, 2016,(11):1546-1554.
Lang-ping Liu, Yu Lin, Ai-guo Guan, Guo-zhang Wu. Tuning Spatial Distribution of Polystyrene-grafted Silica Nanoparticles in Different Polymer Matrices[J]. Acta Polymerica Sinica, 2016,(11):1546-1554.
刘朗萍, 林宇, 管爱国, 吴国章. 细乳液聚合制备接枝纳米粒子及其在聚合物基体中的空间分布调控[J]. 高分子学报, 2016,(11):1546-1554. DOI: 10.11777/j.issn1000-3304.2016.16081.
Lang-ping Liu, Yu Lin, Ai-guo Guan, Guo-zhang Wu. Tuning Spatial Distribution of Polystyrene-grafted Silica Nanoparticles in Different Polymer Matrices[J]. Acta Polymerica Sinica, 2016,(11):1546-1554. DOI: 10.11777/j.issn1000-3304.2016.16081.
采用细乳液聚合制备了不同接枝链长度和密度的聚苯乙烯接枝二氧化硅纳米复合粒子(SiO
2
-PS).利用傅里叶红外光谱(FTIR)、透射电子显微镜(TEM)、示差扫描量热(DSC)、热失重(TGA)与凝胶渗透色谱仪(GPC)考察了SiO
2
-PS粒子接枝结构特征.采用TEM研究了接枝链聚合度(
N
)和接枝密度(
σ
)对SiO
2
-PS填充PS体系纳米粒子空间分布的影响规律.结果显示,
N
基本不变,
σ
越高,纳米粒子越易均匀分散;而接枝链过长易使长链相互缠结,起到反浸润作用,粒子聚集,不利于均匀分散.纳米粒子热力学稳定分散状态仅与
N
、
σ
有关,与粒径无关.通过调控
N
和
σ
可得到特定的纳米粒子分散形貌.对比考察了SiO
2
-PS填充聚甲基丙烯酸甲酯(PMMA)体系结果,揭示了接枝链与基体分子链相容性对纳米粒子空间分布的贡献.
A recurring challenge in the field of polymer nanocomposites (PNCs) is to control the spatial distribution of nanoparticles (NPs) throughout a polymer matrix and thereby optimize the desired macroscopic performance of PNCs.In this study
polystyrene-grafted silica (SiO
2
-PS) NPs with different grafted chain length and grafting density were prepared
via
miniemulsion polymerization.The grafted structure of SiO
2
-PS NPs was characterized
via
combination of Fourier transform infrared spectroscopy (FTIR)
transmission electron microscopy (TEM)
differential scanning calorimeter (DSC)
thermogravimetric analysis (TGA) and gel permeation chromatography (GPC).The core-shell structure of SiO
2
-PS NPs that consisted of different polymerization degrees of grafted chains (
N
) and grafting density (
σ
) can be synthesized by tuning various reaction conditions.The effect of
N
and
σ
on spatial distribution of SiO
2
-PS NP filled PS matrix was investigated by TEM observation.The results reveal that tunable specific spatial distribution of grafted NPs can be obtained through the control of
N
and
σ
.In the case of that
N
is basically the same
grafted particles with higher
σ
are miscible with PS matrix chains
leading to more homogeneous dispersion of NPs.While when
N
is very high for grafted NPs with roughly the same
σ
the grafted chains and the matrix chains are dewetting between each other
which is not effective for uniform dispersion.The thermodynamics stable state of NP distribution is merely related to
N
and
σ
and independent of the particle size.Furthermore
by comparing the results of SiO
2
-PS NP filled PS and polymethyl methacrylate (PMMA) matrices
the contribution of the chemical structure differences and compatibility between grafted chains and matrix chains on spatial distribution of NPs are also discussed.The phase separation behavior between the PMMA matrix and grafted PS chains makes a great difference to the spatial distribution of the grafted NPs.
接枝粒子空间分布接枝链聚合度接枝密度相容性
Grafted nanoparticleSpatial distributionPolymerization degree of grafted chainsGrafting densityCompatibility
A C Balazs , T Emrick , T P Russell . Science , 2006 . 314 1107 - 1110 . DOI:10.1126/science.1130557http://doi.org/10.1126/science.1130557.
S K Kumar , N Jouault , B Benicewicz , T Neely . Macromolecules , 2013 . 46 3199 - 3214 . DOI:10.1021/ma4001385http://doi.org/10.1021/ma4001385.
C W Huang , J P Gao , W Yu , C X Zhou . Macromolecules , 2012 . 45 8420 - 8429 . DOI:10.1021/ma301186bhttp://doi.org/10.1021/ma301186b.
P Akcora , H J Liu , S K Kumar , J Moll , Y Li , B C Benicewicz , L S Schadler , D Acehan , A Z Panagiotopoulos , V Pryamitsyn , V Ganesan , J Iiavsky , P Thiyagarajan , R H Colby , J F Douglas . Nat Mater , 2009 . 8 354 - 359 . DOI:10.1038/nmat2404http://doi.org/10.1038/nmat2404.
D Sunday , J Ilavsky , D L Green . Macromolecules , 2012 . 45 4007 - 4011 . DOI:10.1021/ma300438ghttp://doi.org/10.1021/ma300438g.
G Lindenblatt , W Schärtl , T Pakula , M Schmidt . Macromolecules , 2000 . 33 9340 - 9347 . DOI:10.1021/ma001328fhttp://doi.org/10.1021/ma001328f.
K Matyjaszewski , P J Miller , N Shukla , B Immaraporn , A Gelman , B B Luokala , T M Siclovan , G Kickelbick , T Vallant , H Hoffmann , T Pakula . Macromolecules , 1999 . 32 8716 - 8724 . DOI:10.1021/ma991146phttp://doi.org/10.1021/ma991146p.
C Z Li , B C Benicewicz . Macromolecules , 2005 . 38 5929 - 5936 . DOI:10.1021/ma050216rhttp://doi.org/10.1021/ma050216r.
C H Liu , C Y Pan . Polymer , 2007 . 48 3679 - 3685 . DOI:10.1016/j.polymer.2007.04.055http://doi.org/10.1016/j.polymer.2007.04.055.
D M Qi , Z H Cao , U Ziener . Adv Colloid Interface Sci , 2014 . 211 47 - 62 . DOI:10.1016/j.cis.2014.06.001http://doi.org/10.1016/j.cis.2014.06.001.
F Lan , K X Liu , W Jiang , X B Zeng , Y Wu , Z W Gu . Nanotechnology , 2011 . 22 225604 DOI:10.1088/0957-4484/22/22/225604http://doi.org/10.1088/0957-4484/22/22/225604.
D M Qi , Y Z Bao , Z X Weng , Z M Huang . Polymer , 2006 . 47 4622 - 4629 . DOI:10.1016/j.polymer.2006.04.024http://doi.org/10.1016/j.polymer.2006.04.024.
Xianze Yin , Yeqiang Tan , Lei Lin , Yihu Song , Qiang Zheng . Acta Polymerica Sinica , 2012 . ( 11 ): 1355 - 1341 . http://www.gfzxb.org/CN/abstract/abstract13736.shtml.
殷 先泽 , 谭 业强 , 林 雷 , 宋 义虎 , 郑 强 . 高分子学报 , 2012 . ( 11 ): 1355 - 1341 . http://www.gfzxb.org/CN/abstract/abstract13736.shtml.
J M Asua . Prog Polym Sci , 2002 . 27 1283 - 1346 . DOI:10.1016/S0079-6700(02)00010-2http://doi.org/10.1016/S0079-6700(02)00010-2.
K Landfester . Angew Chem Int Ed , 2009 . 48 4488 - 4507 . DOI:10.1002/anie.v48:25http://doi.org/10.1002/anie.v48:25.
J Hu , M Chen , L M Wu . Polym Chem , 2011 . 2 760 - 772 . DOI:10.1039/C0PY00284Dhttp://doi.org/10.1039/C0PY00284D.
W Stöber , A Fink , E Bohn . J Colloid Interface Sci , 1968 . 26 62 - 69 . DOI:10.1016/0021-9797(68)90272-5http://doi.org/10.1016/0021-9797(68)90272-5.
Z R Han , L Wang , J M Zhu , S F Zhang , W Zhou . J Appl Polym Sci , 2011 . 122 43 - 49 . DOI:10.1002/app.v122.1http://doi.org/10.1002/app.v122.1.
Dongming Qi , Yan Yuan , Rui Zhang , Jie Xu , Lei Yang . Acta Polymerica Sinica , 2011 . ( 11 ): 1258 - 1265 . http://www.gfzxb.org/CN/abstract/abstract13812.shtml.
戚 栋明 , 袁 艳 , 张 睿 , 徐 杰 , 杨 雷 . 高分子学报 , 2011 . ( 11 ): 1258 - 1265 . http://www.gfzxb.org/CN/abstract/abstract13812.shtml.
J Z Zheng , X P Zhou , X L Xie , Y W Mai . Nanoscale , 2010 . 2 2269 - 2274 . DOI:10.1039/b9nr00344dhttp://doi.org/10.1039/b9nr00344d.
X Z Yin , Y Q Tan , Y H Song , Q Zheng . Chinese J Polym Sci , 2012 . 30 26 - 35 . DOI:10.1007/s10118-012-1099-1http://doi.org/10.1007/s10118-012-1099-1.
R Hasegawa , Y Aoki , M Doi . Macromolecules , 1996 . 29 6656 - 6662 . DOI:10.1021/ma960365xhttp://doi.org/10.1021/ma960365x.
TB Martin , A Jayaraman . Soft Matter , 2013 . 9 6876 - 6889 . DOI:10.1039/c3sm00144jhttp://doi.org/10.1039/c3sm00144j.
TB Martin , PM Dodd , A Jayaraman . Phys Rev Lett , 2013 . 110 018301 DOI:10.1103/PhysRevLett.110.018301http://doi.org/10.1103/PhysRevLett.110.018301.
Wenjuan Liu , Yajiang Huang , Dongsheng Wu , Lingqiang Gao , Qi Yang , Guangxian Li . Acta Polymerica Sinica , 2009 . ( 6 ): 553 - 559 . http://www.gfzxb.org/CN/abstract/abstract8670.shtml.
刘 文娟 , 黄 亚江 , 吴 冬生 , 高 灵强 , 杨 其 , 李 光宪 . 高分子学报 , 2009 . ( 6 ): 553 - 559 . http://www.gfzxb.org/CN/abstract/abstract8670.shtml.
0
浏览量
23
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构