浏览全部资源
扫码关注微信
1.江南大学纺织服装学院 无锡 214122
2.生态纺织教育部重点实验室 (江南大学) 无锡 214122
3.江苏奥神新材料股份有限公司 连云港 222000
刘水平, E-mail:liushuiping123@163.com Shui-ping Liu, E-mail:liushuiping123@163.com
纸质出版日期:2017-4,
收稿日期:2016-6-2,
修回日期:2016-7-15,
扫 描 看 全 文
罗军, 朱亚楠, 严诚, 龙啸云, 鲁双, 刘水平, 葛明桥. 酰亚胺基锂电池有机聚合物负极材料的制备及电化学性能研究[J]. 高分子学报, 2017,(4):633-639.
Jun Luo, Ya-nan Zhu, Cheng Yan, Xiao-yun Long, Shuang Lu, Shui-ping Liu, Ming-qiao Ge. Preparation of Organic Polymer Cathode Materials for Amide Lithium-ion Battery Anode and Their Electrochemical Performance[J]. Acta Polymerica Sinica, 2017,(4):633-639.
罗军, 朱亚楠, 严诚, 龙啸云, 鲁双, 刘水平, 葛明桥. 酰亚胺基锂电池有机聚合物负极材料的制备及电化学性能研究[J]. 高分子学报, 2017,(4):633-639. DOI: 10.11777/j.issn1000-3304.2017.16170.
Jun Luo, Ya-nan Zhu, Cheng Yan, Xiao-yun Long, Shuang Lu, Shui-ping Liu, Ming-qiao Ge. Preparation of Organic Polymer Cathode Materials for Amide Lithium-ion Battery Anode and Their Electrochemical Performance[J]. Acta Polymerica Sinica, 2017,(4):633-639. DOI: 10.11777/j.issn1000-3304.2017.16170.
设计合成了一系列聚酰亚胺基的共轭骨架材料用于锂电池负极.首先,选用具有不同共轭体系的二酐分子用作共聚物构建单元,随后通过亚胺化反应与三聚氰胺共缩聚.最后,通过进一步热处理提高材料的交联程度和稳定性.将该材料用于锂离子电池负极表现出稳定的电化学性能.聚合物的倍率性能测试结果表明:在150 mA·g
-1
的电流密度下,循环150次后,放电比容量达到471 mAh·g
-1
以上,在2 A·g
-1
的较大电流密度下,放电比容量达122.1 mAh·g
-1
,当电流密度返回至100 mA·g
-1
时,其放电比容量又上升至532.3 mAh·g
-1
左右,材料具有较好的倍率性能,聚合物材料在充放电过程中,避免了有机小分子材料在与锂离子结合后,易溶于电解液造成的容量损失.同时,共聚物骨架的共轭结构单元和极性基团,可在保证材料的导电性的同时增加材料结合锂离子的能力,因此表现出了优异的倍率性能.
A series of polyimide based covalent organic framework materials for lithium batteries anode were designed and synthesized. In a first step
dianhydride
namely pyromellitic dianhydride (PMDA)
and naphthalene-1
4
5
8-tetracarboxylic dianhydride (NTCDA) with different covalent organic frameworks were chosen to build blocks
which were utilized to polymerize with melamine to fabricate dianhydridebased polyimides (PIs). The obtained materials were heat-treated to improve their crosslinking degree and the stability. The materials showed a stable electrochemical performance when it was used in lithium ion battery cathode. The electrochemical test revealed that the material exhibited good durability
large reversible capacity and satisfied rate capacity. The result of rate capacity test showed that a reversible capacity of PI-1 of 471 mAh·g
-1
was reached after 150 cycles at 150 mA·g
-1
and the reversible capacity of PI-1 reached to 2 A·g
-1
at 122.1 mAh·g
-1
which could be maintained even at current density of 2 A·g
-1
indicating that the material was of good rate capacity. Compared with the low molecular materials
the polymerization of the material avoided the decomposition during the redox process to improve the stability. Meanwhile
the high conjugated structural and polar groups on polymer was believed to have improve the electrical conductivity and the accommodation capability with Li ion. At the same time
the stability of the materials was increased by polymer crosslinking
resulting in the capacity loss in the process of charging and discharging of the lithium ion battery cathode
which was caused by the redox reaction. High degree of conjugate structure unit improved the carrier in the process of charging and discharging and the speed of the ion moving in and out. These materials would potentially afford a way to develop novel organic anode materials with excellent durability and rate capacity for LIBs.
聚酰亚胺有机共轭骨架共聚物锂离子电池
PolyimideCovalent organic frameworksCopolymerLi-ion battery
J M Tarascon , M Armand . Nature , 2001 . 414 ( 6861 ): 359 - 367 . DOI:10.1038/35104644http://doi.org/10.1038/35104644.
H Wang , Y H Wang , Y H Li , Y C Wan , Q Duan . Carbon , 2015 . 82 116 - 123 . DOI:10.1016/j.carbon.2014.10.041http://doi.org/10.1016/j.carbon.2014.10.041.
Y Mao , H Duan , B Xu , L Zhang , Y S Hu , C C Zhao , Z X Wang , L Q Chen , Y S Yang . Energ Environ Sci , 2012 . 5 ( 7 ): 7950 - 7955 . DOI:10.1039/c2ee21817hhttp://doi.org/10.1039/c2ee21817h.
J H Zhao , J J Zhang , P Hu , J Ma , X G Wang , L P Yue , G J Xu , B S Qin , Z H Liu , X H Zhou , G L Cui . Electrochimica Acta , 2016 . 188 23 - 30 . DOI:10.1016/j.electacta.2015.11.088http://doi.org/10.1016/j.electacta.2015.11.088.
Z Li , G Wu . J Mater Chem A , 2014 . 2 ( 20 ): 7471 - 7477 . DOI:10.1039/C4TA00361Fhttp://doi.org/10.1039/C4TA00361F.
L P Yue , J J Zhang , Z H Liu , Q S Kong , X H Zhou , Q Xu , J H Yao , G L Cui . J Electrochem Soc , 2014 . 161 ( 6 ): A1032 - A1038 . DOI:10.1149/2.059406jeshttp://doi.org/10.1149/2.059406jes.
K Liu , J Zheng . J Mater Chem , 2011 . 21 4125 - 4131 . DOI:10.1039/c0jm03127ehttp://doi.org/10.1039/c0jm03127e.
H Cheng , S Wang . J Mater Chem A , 2014 . 2 13783 - 13794 . DOI:10.1039/C4TA02821Jhttp://doi.org/10.1039/C4TA02821J.
Z Song , X Terrence . Nano Lett , 2012 . 12 2205 - 2211 . DOI:10.1021/nl2039666http://doi.org/10.1021/nl2039666.
T Nokami , T Matsuo . J Am Chem Soc , 2012 . 134 19694 - 19700 . DOI:10.1021/ja306663ghttp://doi.org/10.1021/ja306663g.
L Chen , K Furukawa . J Am Chem Soc , 2014 . 136 9806 - 9809 . DOI:10.1021/ja502692whttp://doi.org/10.1021/ja502692w.
S S Han , H Furukawa . J Am Chem Soc , 2008 . 130 11580 - 11581 . DOI:10.1021/ja803247yhttp://doi.org/10.1021/ja803247y.
Q Fang , S Gu . Angew Chem , 2014 . 126 2922 - 2926 . DOI:10.1002/ange.v126.11http://doi.org/10.1002/ange.v126.11.
O K Farha , A M Spokoyny . Chem Mater , 2009 . 21 ( 14 ): 3033 - 3035 . DOI:10.1021/cm901280whttp://doi.org/10.1021/cm901280w.
S Xiong , X Fu . Polym Chem , 2014 . 5 ( 10 ): 3424 - 3431 . DOI:10.1039/c3py01471ahttp://doi.org/10.1039/c3py01471a.
Z Kang , S T Lee , Y Lifshitz . Science , 2015 . 347 ( 6225 ): 970 - 974 . DOI:10.1126/science.aaa3145http://doi.org/10.1126/science.aaa3145.
S Chu , Y Wang . Int J Hydrogen Energ , 2013 . 38 ( 25 ): 10768 - 10772 . DOI:10.1016/j.ijhydene.2013.02.035http://doi.org/10.1016/j.ijhydene.2013.02.035.
W S Kim , Y Hwa . J Power Sources , 2013 . 225 108 - 112 . DOI:10.1016/j.jpowsour.2012.10.030http://doi.org/10.1016/j.jpowsour.2012.10.030.
J Wang , N Du . J Power Sources , 2013 . 222 32 - 37 . DOI:10.1016/j.jpowsour.2012.08.056http://doi.org/10.1016/j.jpowsour.2012.08.056.
M Andrzejak , G Mazur , P . J Mol Struct , 2000 . 527 91 - 102 . DOI:10.1016/S0166-1280(00)00481-4http://doi.org/10.1016/S0166-1280(00)00481-4.
Z Song , H Zhan . Angew Chem , 2010 . 49 8444 - 8448 . DOI:10.1002/anie.201002439http://doi.org/10.1002/anie.201002439.
X Han , G Qing . Angew Chem , 2012 . 51 5147 - 5151 . DOI:10.1002/anie.201109187http://doi.org/10.1002/anie.201109187.
Q Zhang , H Sun . Energy Technol , 2013 . 1 721 - 725 . DOI:10.1002/ente.201300105http://doi.org/10.1002/ente.201300105.
0
浏览量
13
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构