浏览全部资源
扫码关注微信
1.山东大学 材料液固结构演变与加工教育部重点实验室 济南 250061
2.山东玲珑轮胎股份有限公司技术中心 招远 265400
3.齐鲁工业大学材料科学与工程学院 济南 250300
贾玉玺, E-mail: jia_yuxi@sdu.edu.cn Yu-xi Jia, E-mail: jia_yuxi@sdu.edu.cn
纸质出版日期:2017-4-20,
收稿日期:2016-5-18,
修回日期:2016-6-27,
扫 描 看 全 文
智杰颖, 王慎平, 王海庆, 路洪丽, 林文俊, 乔从德, 胡长旭, 贾玉玺. 橡胶在动态载荷下的能量损耗分析[J]. 高分子学报, 2017,(4):708-715.
Jie-ying Zhi, Shen-ping Wang, Hai-qing Wang, Hong-li Lu, Wen-jun Lin, Cong-de Qiao, Chang-xu Hu, Yu-xi Jia. Analysis on Energy Loss of Rubber under Dynamic Load[J]. Acta Polymerica Sinica, 2017,(4):708-715.
智杰颖, 王慎平, 王海庆, 路洪丽, 林文俊, 乔从德, 胡长旭, 贾玉玺. 橡胶在动态载荷下的能量损耗分析[J]. 高分子学报, 2017,(4):708-715. DOI: 10.11777/j.issn1000-3304.2017.16172.
Jie-ying Zhi, Shen-ping Wang, Hai-qing Wang, Hong-li Lu, Wen-jun Lin, Cong-de Qiao, Chang-xu Hu, Yu-xi Jia. Analysis on Energy Loss of Rubber under Dynamic Load[J]. Acta Polymerica Sinica, 2017,(4):708-715. DOI: 10.11777/j.issn1000-3304.2017.16172.
以交联密度不同的同类轮胎胎面胶A1和A2为研究对象,通过动态拉伸实验得到储能模量及损耗模量随频率变化的曲线.建立了黏弹性广义Maxwell模型来定量分析不同温度的橡胶在不同频率的动态载荷下的能量损耗.采用非线性规划的方法分别在低频(10~25 Hz)及高频(25~60 Hz)下拟合模量-频率曲线,得到黏弹性广义Maxwell模型的参数值.采用有限元软件Abaqus模拟胎面胶动态拉伸过程并计算胎面胶的损耗角正切,得到不同温度下胎面胶的损耗角正切随激振频率的变化规律,通过和实验结果的比较证明文中所述黏弹性广义Maxwell模型及其参数获取方法可准确应用于胎面胶的动态拉伸性能分析.预测了在不同温度及频率下每一循环载荷周期中胎面胶的应力-应变迟滞回线以及单位体积胶料的能量损耗,阐释了不同温度下的胎面胶的能量损耗随频率的变化规律,同时结合2种胎面胶的交联密度测试数据分析了胶料的构效关系.
For tire tread rubbers A1 and A2 which were the same kind of rubber but with different cross-linking densities
dynamic tensile experiment was conducted to obtain the curves of storage modulus and loss modulus versus loading frequency. In order to quantitatively analyze the energy loss of rubber under dynamic load with different frequencies and temperatures
a viscoelastic constitutive equation based on generalized Maxwell model was developed. An algorithm of non-linear regression was proposed to fit the curves of dynamic modulus versus loading frequency respectively in low frequency phase (10-25 Hz) and high frequency phase (25-60 Hz). And then the parameter values of storage modulus and loss modulus in the form of generalized Maxwell model were obtained. The dynamic tensile process of the tread rubber was simulated by finite element code Abaqus
and the loss tangent was calculated; hence the changing characteristic of loss tangent under different frequencies was revealed. Through the comparison of experimental results and simulated results of the loss tangent
it was proved that the viscoelastic constitutive model and its parameter determination method could be used to accurately analyze the tread rubber's dynamic tensile performance. Quantitative predictions of the tread rubber stress-strain hysteresis loop and the energy dissipation in a full deformation cycle under different temperatures and frequencies were performed
and then the change rule of the energy dissipation under such circumstance was explained. The results reveal that the energy dissipation of tread rubbers is gradually increased as the loading frequency increases
whereas its dependence on frequency is gradually reduced as the temperature increases. Meanwhile
the structure-function relationship of tread rubber was explored through the comparative testing of cross-linking density. Although the cross-linking density of tread rubber A2 was slightly higher than that of tread rubber A1
the energy loss of tread rubber A2 was larger than that of tread rubber A1 under the same conditions due to the higher proportion of the dangling chain end in the molecular chain.
橡胶能量损耗动态模量黏弹性模型有限元模拟
RubberEnergy lossDynamic modulusViscoelastic modelFinite element method
E O Lu , Z M Ripin . Mater Design , 2011 . 32 ( 4 ): 1880 - 1887 . DOI:10.1016/j.matdes.2010.12.015http://doi.org/10.1016/j.matdes.2010.12.015.
I M Avrom . Rubber Chem Technol , 1991 . 64 ( 3 ): 481 - 492 . DOI:10.5254/1.3538565http://doi.org/10.5254/1.3538565.
S Banić , D S Stamenković , V D Miltenović . Therm Sci , 2012 . 16 ( 2 ): 527 - 539 . DOI:10.2298/TSCI110729012Vhttp://doi.org/10.2298/TSCI110729012V.
Hu Xiaoling (胡小玲). Micro-and Macro-viscohyperelastic Behavior of Carbon Black Filled Rubbers (炭黑填充橡胶黏超弹性力学行为的宏细观研究). Doctoral Dissertation of Xiangtan University (湘潭大学博士学位论文), 2013
Yuyuan Lu , Lijia An , Jian Wang . Acta Polymerica Sinica , 2016 . ( 6 ): 688 - 697 . http://www.gfzxb.org/CN/abstract/abstract14588.shtml.
卢 宇源 , 安 立佳 , 王 健 . 高分子学报 , 2016 . ( 6 ): 688 - 697 . http://www.gfzxb.org/CN/abstract/abstract14588.shtml.
S W Katicha , G W Flintsch . Rheol Acta , 2012 . 51 ( 8 ): 675 - 689 . DOI:10.1007/s00397-012-0625-yhttp://doi.org/10.1007/s00397-012-0625-y.
G Bódai , T Goda . Acta Polytech Hung , 2011 . 8 ( 5 ): 89 - 108.
J E L Pacheco , C A Bavastri , J T Pereira . Nucl Instrum Meth A , 2015 . 12 ( 2 ): 420 - 445.
H H Winter . J Non-Newton Fluid , 1997 . 68 ( 2 ): 225 - 239.
P E Austrell , A K Olsson . Polymer Testing , 2013 . 32 ( 2 ): 306 - 312 . DOI:10.1016/j.polymertesting.2012.11.015http://doi.org/10.1016/j.polymertesting.2012.11.015.
Costa M F P, Ribeiro C. Generalized fractional Maxwell model: parameter estimation of a viscoelastic material. In: Theodore E S, George P, Tsitouras C, eds. International Conference of Numerical Analysis and Applied Mathematics. Greece: AIP Publishing, 2012. 790-793
Zhan Xiaoli (詹小丽). Research on the Viscoelastic Properties of Asphalt using DMA (基于DMA方法对沥青粘弹性能的研究). Doctoral Dissertation of Harbin Institute of Technology (哈尔滨工业大学博士学位论文), 2007
Laclair T J. Rolling resistance. In: Gent A N, Walter J D, eds. The Pneumatic Tire. Washington DC: NHTSA, 2006. 482-488
K Bergmann , K Gerberding . Colloid Polym Sci , 1981 . 259 990 - 994 . DOI:10.1007/BF01558612http://doi.org/10.1007/BF01558612.
R A Orza , P C M M Magusin , V M Litvinov . Macromolecules , 2007 . 40 8999 - 9008 . DOI:10.1021/ma071015lhttp://doi.org/10.1021/ma071015l.
H J Luo , K A Manfred , S Horst . Macromolecules , 2004 . 37 ( 21 ): 8000 - 8009 . DOI:10.1021/ma035985uhttp://doi.org/10.1021/ma035985u.
Riguang Jin . Polymer Physics , 3rd ed : Beijing Chemical Industry Press , 2006 . 196 - 198.
金 日光 . 高分子物理 , 第三版 : 北京 化学工业出版社 , 2006 . 196 - 198.
G S Batt , J M Gibert , M Daqaq . J Sound Vib , 2015 . 349 330 - 347 . DOI:10.1016/j.jsv.2015.03.039http://doi.org/10.1016/j.jsv.2015.03.039.
Jieying Zhi , Hongli Lu , Haiqing Wang , Shenping Wang , Wenjun Lin , Congde Qiao , Yuxi Jia . Acta Polymerica Sinica , 2016 . ( 7 ): 887 - 894 . http://www.gfzxb.org/CN/abstract/abstract14504.shtml.
智 杰颖 , 路 洪丽 , 王 海庆 , 王 慎平 , 林 文俊 , 乔 从德 , 贾 玉玺 . 高分子学报 , 2016 . ( 7 ): 887 - 894 . http://www.gfzxb.org/CN/abstract/abstract14504.shtml.
J Diani , P Gilormini , C Frédy . Int J Solids Struct , 2012 . 49 ( 5 ): 793 - 799 . DOI:10.1016/j.ijsolstr.2011.11.019http://doi.org/10.1016/j.ijsolstr.2011.11.019.
F Liu , M P F Sutcliffe , W R Graham . Tire Sci Technol , 2008 . 36 ( 3 ): 211 - 226 . DOI:10.2346/1.2965832http://doi.org/10.2346/1.2965832.
Jianhua Ma , Liqun Zhang , Youping Wu . Polym Bull , 2014 . ( 5 ): 1 - 9.
马 建华 , 张 立群 , 吴 友平 . 高分子通报 , 2014 . ( 5 ): 1 - 9.
0
浏览量
12
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构