浏览全部资源
扫码关注微信
太原理工大学力学学院 太原 030024
李永存, E-mail:liyongcun@tyut.edu.cn Yong-cun Li, E-mail:liyongcun@tyut.edu.cn
纸质出版日期:2017-4,
收稿日期:2016-5-20,
修回日期:2016-8-29,
扫 描 看 全 文
申亚茹, 栾云博, 李永存, 韩志军, 郭章新. 微波调控石墨烯-碳纳米管协同增强聚氨酯损伤自修复研究[J]. 高分子学报, 2017,(4):624-632.
Ya-ru Shen, Yun-bo Luan, Yong-cun Li, Zhi-jun Han, Zhang-xin Guo. Investigation on the Self-healing of Damage on Polyurethane Synergistically Reinforced by Graphene-carbon Nanotube under Microwave Radiation[J]. Acta Polymerica Sinica, 2017,(4):624-632.
申亚茹, 栾云博, 李永存, 韩志军, 郭章新. 微波调控石墨烯-碳纳米管协同增强聚氨酯损伤自修复研究[J]. 高分子学报, 2017,(4):624-632. DOI: 10.11777/j.issn1000-3304.2017.16183.
Ya-ru Shen, Yun-bo Luan, Yong-cun Li, Zhi-jun Han, Zhang-xin Guo. Investigation on the Self-healing of Damage on Polyurethane Synergistically Reinforced by Graphene-carbon Nanotube under Microwave Radiation[J]. Acta Polymerica Sinica, 2017,(4):624-632. DOI: 10.11777/j.issn1000-3304.2017.16183.
首先采用溶液共混法制备出石墨烯-碳纳米管(G-CNT)/聚氨酯(TPU)复合材料,然后通过拉伸实验及扫描电子显微镜(SEM)表征来考察该材料的拉伸强度和微波自修复特性,并从力学及材料与微波之间的相互作用等角度对其拉伸强度增强和微波修复机理进行研究.结果表明:在拉伸强度方面,与单一的石墨烯或CNT增强TPU相比,G-CNT之间形成的协同效应使TPU拉伸强度得到进一步提高,当石墨烯和CNT的质量比为3:1时,G-CNT/TPU抗拉强度较纯TPU提高了67%,较G/TPU提高了18%,较CNT/TPU提高了25%;在材料裂纹的微波修复方面,石墨烯和CNT之间的协同效应使TPU材料自修复效果得到有效提高,当石墨烯和CNT的质量比为3:1时,G-CNT/TPU修复效果达到最高值117%.
To make up for the limited mechanical strength of polyurethane (TPU) material
carbon nanotube (CNT) and graphene (G) were added as reinforced phase into TPU matrix. The mechanical property of this CNT-G/TPU nanocomposite as well as its self-healing property under microwave processing were studied. Firstly
the solution mixing method was adopted to prepare the polyurethane nano-composite filled with carbon nanotube and graphene. Then the mechanical property of this G-CNT/TPU nanocomposite was investigated by tensile testing. Mechanics principle analysis and scanning electron microscopy (SEM) were used to study the mechanisms of mechanical enhancement of this material. Secondly
self-healing property of these nanocomposites under microwave electromagnetic fields was also studied through the crack-repair processing
tensile testing and SEM characterization. Moreover
the mechanisms of both mechanical enhancement and self-healing under microwave radiation were studied. The results indicated that
in terms of mechanical properties
there was synergetic reinforcement effect between the graphene and CNT
which could further improve the mechanical performance of G-CNT/TPU nanocomposites when compared with the samples that were only reinforced with CNT or grapheme. With the ratio of graphene to CNT at 3:1
the mechanical properties of G-CNT/TPU composites reached the optimum value of 70.6 MPa. The tensile strength of G-CNT/TPU composites increased by 67% when compared with that of pure TPU materials
by 18% when compared with that of G/TPU composites
and increased by 25% when compared with that of CNT/TPU composites. In term of the self-healing of cracks in the material under microwave radiation
the results showed that these G-CNT/TPU composites could be healed effectively and rapidly by microwave electromagnetic radiation. Besides
it was shown that the self-healing efficiency could be further improved by the synergy effect between graphene and CNT. With the ratio of graphene to CNT at 3:1
the self-healing of G-CNT/TPU composite reached the best result
which was about 117% of the virgin composite.
碳纳米管石墨烯聚氨酯自修复拉伸强度
Carbon nanotubusGraphenePolyurethaneSelf-healingMechanical properties
B Ghosh , M W Urban . Science , 2009 . 323 ( 5920 ): 1458 - 1460 . DOI:10.1126/science.1167391http://doi.org/10.1126/science.1167391.
Sichao Li , Peng Han , Huaping Xu . Progress in Chemistry , 2012 . 24 ( 7 ): 1346 - 1352.
李 思超 , 韩 朋 , 许 华平 . 化学进展 , 2012 . 24 ( 7 ): 1346 - 1352.
C Lee , X Wei , J W Kysar , J Hone . Science , 2008 . 321 ( 5887 ): 385 - 388 . DOI:10.1126/science.1157996http://doi.org/10.1126/science.1157996.
X Zhao , Q Zhang , D Chen . Macromolecules , 2010 . 43 ( 5 ): 2357 - 2363 . DOI:10.1021/ma902862uhttp://doi.org/10.1021/ma902862u.
M Valentini , F Piana , J Pionteck , F R Lamastra , F Nanni . Compos Sci Technol , 2015 . 114 26 - 33 . DOI:10.1016/j.compscitech.2015.03.006http://doi.org/10.1016/j.compscitech.2015.03.006.
L Kong , X Yin , X Yuan , Y Zhang , X Liu , L Cheng , L Zhang . Carbon , 2014 . 73 185 - 193 . DOI:10.1016/j.carbon.2014.02.054http://doi.org/10.1016/j.carbon.2014.02.054.
L Huang , N Yi , Y Wu , Y Zhang , Q Zhang , Y Huang , Y Ma , Y Chen . Adv Mater , 2013 . 25 ( 15 ): 2224 - 2228 . DOI:10.1002/adma.201204768http://doi.org/10.1002/adma.201204768.
M M J Treacy , T W Ebbesen , J M Gibson . Nature , 1996 . 381 ( 6584 ): 678 - 680 . DOI:10.1038/381678a0http://doi.org/10.1038/381678a0.
Y Feng , M Qin , H Guo , K Yoshino , W Feng . ACS Appl Mater Inter , 2013 . 5 ( 21 ): 10882 - 10888 . DOI:10.1021/am403071khttp://doi.org/10.1021/am403071k.
D Yuan , S Chen , R Yuan , J Zhang , W Zhang . Analyst , 2013 . 138 ( 20 ): 6001 - 6006 . DOI:10.1039/c3an01031ghttp://doi.org/10.1039/c3an01031g.
Y Hu , X Li , J Wang , R Li , X Sun . J Power Sources , 2013 . 237 41 - 46 . DOI:10.1016/j.jpowsour.2013.02.065http://doi.org/10.1016/j.jpowsour.2013.02.065.
F Du , D Yu , L Dai , S Ganguli , V Varshny , A K Roy . Chem Mater , 2011 . 23 ( 21 ): 4810 - 4816 . DOI:10.1021/cm2021214http://doi.org/10.1021/cm2021214.
T Odedairo , J Ma , Y Gu , J Chen , X S Zhao , Z Zhu . J Mater Chem A , 2014 . 2 ( 5 ): 1418 - 1428 . DOI:10.1039/C3TA13871Bhttp://doi.org/10.1039/C3TA13871B.
S Roy , S K Srivastava , J Pionteck , V Mittal . Macromol Mater Eng , 2015 . 300 ( 3 ): 346 - 357 . DOI:10.1002/mame.201400291http://doi.org/10.1002/mame.201400291.
X Fang , Z Yang , L Qiu , H Sun , S Pan , J Deng , Y Luo , H Peng . Adv Mater , 2014 . 26 ( 11 ): 1694 - 1698 . DOI:10.1002/adma.201305241http://doi.org/10.1002/adma.201305241.
Z Yang , M Liu , C Zhang , W W Tjiu , T Liu , H Peng . Angew Chem Int Ed , 2013 . 52 ( 14 ): 3996 - 3999 . DOI:10.1002/anie.v52.14http://doi.org/10.1002/anie.v52.14.
K H Tan , R Ahmad , M R Johan . Mater Chem Phys , 2013 . 139 ( 1 ): 66 - 72 . DOI:10.1016/j.matchemphys.2012.12.006http://doi.org/10.1016/j.matchemphys.2012.12.006.
D J Yang , Q Zhang , G Chen , S F Yoon , J Ann , S G Wang , Q Zhou , Q Wang , J Q Li . Phys Rev B , 2002 . 66 ( 16 ): 165441 - 165446 . DOI:10.1103/PhysRevB.66.165441http://doi.org/10.1103/PhysRevB.66.165441.
Shaonan Cui , Peng Zhang , Yalin Zhang , Na Sun , Yanling Hou . Acta Polymerica Sinica , 2015 . ( 12 ): 1443 - 1448 . http://www.gfzxb.org/CN/abstract/abstract14385.shtml.
崔 少男 , 张 鹏 , 张 亚琳 , 孙 娜 , 侯 燕玲 . 高分子学报 , 2015 . ( 12 ): 1443 - 1448 . http://www.gfzxb.org/CN/abstract/abstract14385.shtml.
J Kwon , H Kim . J Polym Sci Part A Polym Chem , 2005 . 43 ( 17 ): 3973 - 3985 . DOI:10.1002/(ISSN)1099-0518http://doi.org/10.1002/(ISSN)1099-0518.
K K Sadasivuni , D Ponnamma , B Kumar , M Strankowski , R Cardinaels , P Moldenaers , S Thomas , Y Grohens . Compos Sci Technol , 2014 . 104 18 - 25 . DOI:10.1016/j.compscitech.2014.08.025http://doi.org/10.1016/j.compscitech.2014.08.025.
S Liu , M Tian , B Yan , Y Yao , L Zhang , T Nishi , N Ning . Polymer , 2015 . 56 375 - 384 . DOI:10.1016/j.polymer.2014.11.012http://doi.org/10.1016/j.polymer.2014.11.012.
Zhenlong Gu . Duanxianwei Fuhecailiao Lixue , 1st ed : Beijing National Defence Industry Press , 1987 . 97 - 149.
顾 震隆 . 短纤维复合材料力学 , 第一版 : 北京 国防工业出版社 , 1987 . 97 - 149.
Donglin Zhao , Zengmin Shen . Journal of Inorganic Materials , 2005 . 20 ( 3 ): 608 - 612 . http://www.cqvip.com/Main/Detail.aspx?id=15700563.
赵 东林 , 沈 曾民 . 无机材料学报 , 2005 . 20 ( 3 ): 608 - 612 . http://www.cqvip.com/Main/Detail.aspx?id=15700563.
0
浏览量
12
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构