浏览全部资源
扫码关注微信
1.宁波大学材料科学与化学工程学院 宁波 315211
2.中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 宁波 315201
吴青芸, E-mail:wuqingyun@nbu.edu.cnQing-yun Wu, E-mail:wuqingyun@nbu.edu.cn
顾林, E-mail:gulin1985@gmail.comLin GuE-mail:gulin1985@gmail.com
纸质出版日期:2017-5,
收稿日期:2016-9-1,
修回日期:2016-9-23,
扫 描 看 全 文
吴青芸, 潘叶寒, 金伟中, 徐佳敏, 劳侃侃, 顾林. 木质素磺酸钠改性聚砜膜的制备及其在正渗透膜中的应用[J]. 高分子学报, 2017,(5):851-857.
Qing-yun Wu, Ye-han Pan, Wei-zhong Jin, Jia-min Xu, Kan-kan Lao, Lin Gu. Preparation of Sodium Lignin Sulfonate Modified Polysulfone Membranes and Their Use as Supports for Forward Osmosis Membranes[J]. Acta Polymerica Sinica, 2017,(5):851-857.
吴青芸, 潘叶寒, 金伟中, 徐佳敏, 劳侃侃, 顾林. 木质素磺酸钠改性聚砜膜的制备及其在正渗透膜中的应用[J]. 高分子学报, 2017,(5):851-857. DOI: 10.11777/j.issn1000-3304.2017.16267.
Qing-yun Wu, Ye-han Pan, Wei-zhong Jin, Jia-min Xu, Kan-kan Lao, Lin Gu. Preparation of Sodium Lignin Sulfonate Modified Polysulfone Membranes and Their Use as Supports for Forward Osmosis Membranes[J]. Acta Polymerica Sinica, 2017,(5):851-857. DOI: 10.11777/j.issn1000-3304.2017.16267.
采用木质素磺酸钠作为亲水添加剂,通过浸没沉淀相转化法制备了木质素磺酸钠共混改性聚砜膜,以改善聚砜膜的亲水性,并用作正渗透膜的支撑层,以降低内浓差极化效应.利用扫描电子显微镜、衰减全反射傅里叶变换红外光谱仪、水接触角仪等研究了不同木质素磺酸钠添加量对聚砜膜的结构和表面性质的影响.结果表明,添加木质素磺酸钠后,聚砜膜的指状孔变得规整且狭长.水接触角实验证实添加木质素磺酸钠能改善聚砜膜的亲水性,当木质素磺酸钠含量为0.4 wt%时,聚砜膜的表面水接触角可降低至65°.正/反渗透测试装置分别用于表征正渗透膜的传质性质和结构参数.结果表明,以0.4 wt%木质素磺酸钠改性聚砜膜为支撑层的正渗透膜的水渗透性能(
A
=3.12×10
-5
LMH·Pa
-1
)优于纯聚砜基底正渗透膜(0.76×10
-5
LMH·Pa
-1
),而且前者的结构参数(
S
=2010μm)远小于后者(3450μm),说明木质素磺酸钠改性聚砜膜有效弱化了正渗透膜的内浓差极化效应.
Forward osmosis (FO) becomes an emerging and promising platform of membrane separation technology. Nevertheless
FO processing always suffers from poor water flux performance
resulted from internal concentration polarization (ICP). Herein
to improve the hydrophilicity of polysulfone (PSf) membranes
sodium lignin sulfonate (LS) was used as a hydrophilic additive to prepare LS/PSf blend membranes by phase inversion. The LS/PSf blend membranes can serve as the hydrophilic support layer of FO membranes in order to weaken the ICP. The effects of LS content on the structure and the properties of LS/PSf blend membranes were investigated by scanning electron microscopy (SEM)
FTIR/ATR spectroscopy
and water contact angle (WCA). It was shown that the finger-like pores of LS/PSf blend membranes became long and narrow
and the WCA of the membrane was reduced to 65° with LS content of 0.4 wt%. Then
thin film composite (TFC) membranes were fabricated by interfacial polymerization on PSf membrane and LS/PSf blend membrane with LS content of 0.4 wt%
which were named TFC and TFC-LS0.4 membranes
respectively. The results from FTIR/ATR spectroscopy and SEM confirmed that polyamide (PA) films were formed with a typical "ridge-valley" surface morphology on both TFC and TFC-LS0.4 membranes. Moreover
the PA film of TFC-LS0.4 membrane was rougher and thicker than that of TFC membrane. Their FO performances were characterized by FO test
where the draw solution was 0.5
1.0
1.5 or 2.0 mol/L NaCl solution
and the feed solution was DI water. The water flux and reverse salt flux increased with the concentration of draw solution both for TFC and TFC-LS0.4 membranes. With the same draw solution
TFC-LS0.4 membrane showed a larger water flux and reverse salt flux than TFC membrane. Furthermore
reverse osmosis test was conducted to study the transport properties and structural parameters of FO membranes. It is clear that TFC-LS0.4 membrane presented higher water permeability (
A
=3.12×10
-5
LMH·Pa
-1
) with smaller structural parameter (
S
=2010μm) than TFC membrane (
A
=0.76×10
-5
LMH·Pa
-1
S
=3450μm). It means that the hydrophilicity of LS/PSf blend membranes facilitated the weakening of ICP effects of FO membranes.
木质素聚砜亲水改性正渗透膜内浓差极化
LigninPolysulfoneHydrophilic modificationForward osmosis membraneInternal concentration polarization
T Y Cath , A E Childress , M Elimelech . . J Membr Sci , 2006 . 281 70 - 87 . DOI:10.1016/j.memsci.2006.05.048http://doi.org/10.1016/j.memsci.2006.05.048.
D T Qin , Z Y Liu , D Sun , X X Song , H W Bai . . Sci Rep , 2015 . 5 1 - 14.
N K Rastogi . . Crit Rev Food Sci Nutr , 2016 . 56 266 - 291 . DOI:10.1080/10408398.2012.724734http://doi.org/10.1080/10408398.2012.724734.
Yuan Yu , Qingyun Wu , Zhongren Chen . . Progress in Chemistry , 2015 . 27 1822 - 1832 . DOI:10.7536/PC150606http://doi.org/10.7536/PC150606.
虞 源 , 吴 青芸 , 陈 忠仁 . . 化学进展 , 2015 . 27 1822 - 1832 . DOI:10.7536/PC150606http://doi.org/10.7536/PC150606.
T Y Cath , N T Hancock , C D Lundin , C Hoppe-Jones , J E Drewes . . J Membr Sci , 2010 . 362 417 - 426 . DOI:10.1016/j.memsci.2010.06.056http://doi.org/10.1016/j.memsci.2010.06.056.
J R McCutcheon , M Elimelech . . J Membr Sci , 2006 . 284 237 - 247 . DOI:10.1016/j.memsci.2006.07.049http://doi.org/10.1016/j.memsci.2006.07.049.
Jia Xu , Yuanyuan Tang , Congjie Gao . . Progress in Chemistry , 2015 . 27 1025 - 1032.
徐 佳 , 唐 媛媛 , 高 从堦 . . 化学进展 , 2015 . 27 1025 - 1032.
N Y Yip , A Tiraferri , W A Phillip , J D Schiffman , M Elimelech . . Environ Sci Technol , 2010 . 44 3812 - 3818 . DOI:10.1021/es1002555http://doi.org/10.1021/es1002555.
J R McCutcheon , M Elimelech . . J Membr Sci , 2008 . 318 458 - 466 . DOI:10.1016/j.memsci.2008.03.021http://doi.org/10.1016/j.memsci.2008.03.021.
N Ma , J Wei , S R Qi , Y Zhao , Y B Gao , C Y Y Tang . . J Membr Sci , 2013 . 441 54 - 62 . DOI:10.1016/j.memsci.2013.04.004http://doi.org/10.1016/j.memsci.2013.04.004.
D Emadzadeh , W J Lau , T Matsuura , M Rahbari-Sisakht , A F Ismail . . Chem Eng J , 2014 . 237 70 - 80 . DOI:10.1016/j.cej.2013.09.081http://doi.org/10.1016/j.cej.2013.09.081.
Q Liu , J G Li , Z Z Zhou , J P Xie , J Y Lee . . Sci Rep , 2016 . 6 1 - 10 . DOI:10.1038/s41598-016-0001-8http://doi.org/10.1038/s41598-016-0001-8.
G Han , B W Zhao , F J Fu , T S Chung , M Weber , C Staudt , C Maletzko . . J Membr Sci , 2016 . 502 84 - 93 . DOI:10.1016/j.memsci.2015.12.023http://doi.org/10.1016/j.memsci.2015.12.023.
N Widjojo , T S Chung , M Weber , C Maletzko , V Warzelhan . . J Membr Sci , 2011 . 383 214 - 223 . DOI:10.1016/j.memsci.2011.08.041http://doi.org/10.1016/j.memsci.2011.08.041.
G Han , T S Chung , M Toriida , S Tamai . . J Membr Sci , 2012 . 423 543 - 555.
Haifeng Li , Zengbo Pang , Lailai Wang . . Acta Polymerica Sinica , 2015 . ( 12 ): 1363 - 1376 . DOI:10.11777/j.issn1000-3304.2015.15172http://doi.org/10.11777/j.issn1000-3304.2015.15172http://www.gfzxb.org/CN/abstract/abstract14411.shtml.
李 海峰 , 逄 增波 , 王 来来 . . 高分子学报 , 2015 . ( 12 ): 1363 - 1376 . DOI:10.11777/j.issn1000-3304.2015.15172http://doi.org/10.11777/j.issn1000-3304.2015.15172http://www.gfzxb.org/CN/abstract/abstract14411.shtml.
Wenjing Xu , Wensheng Zhang , Yan Li , Sheli Zhang . . Acta Polymerica Sinica , 2016 . ( 3 ): 307 - 314 . DOI:10.11777/j.issn1000-3304.2016.15194http://doi.org/10.11777/j.issn1000-3304.2016.15194http://www.gfzxb.org/CN/abstract/abstract14440.shtml.
许 文静 , 张 文生 , 李 焱 , 张 社利 . . 高分子学报 , 2016 . ( 3 ): 307 - 314 . DOI:10.11777/j.issn1000-3304.2016.15194http://doi.org/10.11777/j.issn1000-3304.2016.15194http://www.gfzxb.org/CN/abstract/abstract14440.shtml.
Xueqing Qiu , Yuan Wu , Yonghong Deng , Dongjie Yang , Xinping Ouyang , Conghua Yi . . Acta Polymerica Sinica , 2010 . ( 6 ): 699 - 704.
邱 学青 , 吴 渊 , 邓 学红 , 杨 东杰 , 欧阳 新平 , 易 聪华 . . 高分子学报 , 2010 . ( 6 ): 699 - 704.
Fengel D, Wegener G. Wood Chemistry Ultrastructure Reactions. Berlin:Walter de Gruyter, 1984. 157-163
S M Aharoni . . Polym Adv Technol , 1995 . 6 373 - 382 . DOI:10.1002/pat.1995.220060601http://doi.org/10.1002/pat.1995.220060601.
Y Jin , Z Su . . J Membr Sci , 2009 . 330 175 - 179 . DOI:10.1016/j.memsci.2008.12.055http://doi.org/10.1016/j.memsci.2008.12.055.
0
浏览量
23
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构