浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
2.吉林大学理论化学研究所 超分子结构与材料国家重点实验室 长春 130023
吕中元, E-mail: luzhy@jlu.edu.cn Zhong-yuan Lv, E-mail:luzhy@jlu.edu.cn
纸质出版日期:2017-2-20,
收稿日期:2016-9-21,
修回日期:2016-10-29,
扫 描 看 全 文
朱有亮, 李占伟, 孙昭艳, 吕中元. 超支化分子自组装形成纳米纤维的计算机模拟研究[J]. 高分子学报, 2017,(2):351-358.
Zhu You-liang, Li Zhan-wei, Sun Zhao-yan, Lv Zhong-yuan. Computer Simulation Study on the Formation of Nanofibers by Hyper Branched Molecules[J]. Acta Polymerica Sinica, 2017,(2):351-358.
朱有亮, 李占伟, 孙昭艳, 吕中元. 超支化分子自组装形成纳米纤维的计算机模拟研究[J]. 高分子学报, 2017,(2):351-358. DOI: 10.11777/j.issn1000-3304.2017.16294.
Zhu You-liang, Li Zhan-wei, Sun Zhao-yan, Lv Zhong-yuan. Computer Simulation Study on the Formation of Nanofibers by Hyper Branched Molecules[J]. Acta Polymerica Sinica, 2017,(2):351-358. DOI: 10.11777/j.issn1000-3304.2017.16294.
利用分子动力学模拟方法,针对实验上的超支化分子建立其粗粒化模型,模拟研究了该超支化分子在水和空气的界面上形成Langmuir单分子层的过程,并分析了通过自组装形成的纤维的微观结构.该纤维是由单排超支化分子线性排列形成,超支化分子的末端碳链裸露在空气中,且处于伸展的竖起状态.调节末端支链的亲疏水性能够影响形成的自组装结构,末端支链越亲水,超支化分子越不容易形成一维纳米纤维结构.
Long-range and one-dimensional nanofibers assembled by hyper branched molecules were observed in experiments. Intuitively
the isotropic hyper branched molecules are not expected to form regularly one-dimensional self-assembly structures. The formation mechanism and detailed structures of the self-assembly nanofibers are still unclear. In this work
we employed molecular dynamics simulation to study the formation process of these one-dimensional nanofibers. We built the coarse-grained model of the hyper branched molecules reported in experiments
and studied the formation of Langmuir condensed monolayer by gradually decreasing the surface area of air-water interface
where the hyper branched molecules were adsorbed. The detailed structures of the self-assembled nanofibers were identified in simulation
which can help to understand experimental results from a microscopic point of view. To be specific
we observed the one-dimensional nanofibers which consist of only one row of molecules
different from the speculation in experiments that the nanofibers may consist of multi-rows of molecules. We also found that the hydrophobic alkyl tails were oriented upwards to the air
covering most part of the core region of the hyper branched molecules
in agreement with the experiments. The influence of the interactions between terminal branches on the self-assembled structures was also studied. With strong attractions between terminal branches
large sheets of aggregation structure were formed by the hyper branched molecules. While with weak attractions
short linear micelles were formed. The one-dimensional nanofibers were formed only when the attractions between terminal branches were in a range of moderate intensity. In addition
we studied also the influence of the interactions between terminal branches and water on the formation of the nanofiber structure. It was found that suitable hydrophobicity was crucial for the formation of the nanofiber structure
and the hydrophilic terminal branches hindered the formation of the one-dimensional nanofibers. Instead
short linear micelles will be formed between the hyper branched molecules and the hydrophilic terminal branches.
超支化分子纳米纤维计算机模拟
Hyper branched moleculesNanofibersMolecular dynamics simulation
Chao Gao , Deyue Yan . Science Focus , 2007 . 2 ( 5 ): 41 .
高 超 , 颜 德岳 . 科学观察 , 2007 . 2 ( 5 ): 41 .
Xiaoyi Sun , Yongfeng Zhou , Deyue Yan . Scientia Sinica Chimica , 2009 . 39 ( 10 ): 1237 - 1245.
孙 晓毅 , 周 永丰 , 颜 德岳 . 国科学:化学 , 2009 . 39 ( 10 ): 1237 - 1245.
Chao Gao , Deyue Yan . Chinese Science Bulletin , 2000 . 45 ( 11 ): 1145 - 1148.
高 超 , 颜 德岳 . 科学通报 , 2000 . 45 ( 11 ): 1145 - 1148.
X Zhai , S Peleshanko , N S Klimenko , K L Genson , D Vaknin , M Y Vortman , V V Shevchenko , V V Tsukruk . Macromolecules , 2003 . 36 ( 9 ): 3101 - 3110 . DOI:10.1021/ma021383jhttp://doi.org/10.1021/ma021383j.
M R Molla , P Rangadurai , G M Pavan , S Thayumanavan . Nanoscale , 2015 . 7 ( 9 ): 3817 - 3837 . DOI:10.1039/C4NR04563Ghttp://doi.org/10.1039/C4NR04563G.
I S And , A J Mchugh , L J M And , S M Jeffre . Macromolecules , 2001 . 34 ( 25 ): 8811 - 8813 . DOI:10.1021/ma0105082http://doi.org/10.1021/ma0105082.
A P Filippov , E V Belyaeva , E B Tarabukina , A I Amirova . Polym Sci , 2011 . 53 ( 1 ): 107 - 117.
T C Le , B D Todd , P J Daivis , A Uhlherr . J Chem Phys , 2009 . 130 ( 7 ): 582 - 589.
D Yan . Sci China Chem , 2015 . 58 ( 5 ): 835 - 838 . DOI:10.1007/s11426-015-5388-8http://doi.org/10.1007/s11426-015-5388-8.
Barnes T J, Ametov I, Prestidge C A. Dendrimer assembly in solution and at interfaces. In:Jagadish C, Max Lu G Q, eds. International Conference on Nanoscience and Nanotechnology, 2006. 278-281
A Brzozowska , J Paczesny , P Parzuchowski , M Kusznerczuk , K Nikiforov , G Rokicki , J Gregorowicz . Macromolecules , 2014 . 47 ( 15 ): 5256 - 5268 . DOI:10.1021/ma500941chttp://doi.org/10.1021/ma500941c.
S Peleshanko , V V Tsukruk . Prog Polym Sci , 2008 . 33 ( 5 ): 523 - 580 . DOI:10.1016/j.progpolymsci.2008.01.003http://doi.org/10.1016/j.progpolymsci.2008.01.003.
S Peleshanko , V V Tsukruk . J Polym Sci, Part B:Polym Phys , 2012 . 50 ( 2 ): 83 - 100 . DOI:10.1002/polb.v50.2http://doi.org/10.1002/polb.v50.2.
M Ornatska , S Peleshanko , K L Genson , B Rybak , K N Bergman , V V Tsukruk . J Am Chem Soc , 2004 . 126 ( 31 ): 9675 - 9684 . DOI:10.1021/ja0498944http://doi.org/10.1021/ja0498944.
O Maryna , K N Bergman , R Beth , P Sergiy , V V Tsukruk . Angew Chem-Int Ed , 2004 . 43 ( 39 ): 5246 - 5249 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773.
D Frenkel , B Smit . Understanding Molecular Simulations , : San Diego Academic Press , 2002 .
W Wang , Y C Li , Z Y Lu . Sci China Chem , 2015 . 58 ( 9 ): 1 - 7.
W C Yu , K F Luo . Sci China Chem , 2014 . 58 ( 4 ): 689 - 693.
A Rahimi , S Amjad-Iranagh , H Modarress . J Mol Model , 2016 . 22 ( 3 ): 1 - 10.
C A López , A J Rzepiela , A H de Vries , L Dijkhuizen , P H Hunenberger , S J Marrink . J Chem Theory Comput , 2009 . 5 ( 12 ): 3195 - 3210 . DOI:10.1021/ct900313whttp://doi.org/10.1021/ct900313w.
L Monticelli , S K Kandasamy , X Periole , R G Larson , D P Tieleman , S J Marrink . J Chem Theory Comput , 2008 . 4 ( 5 ): 819 - 834 . DOI:10.1021/ct700324xhttp://doi.org/10.1021/ct700324x.
Y L Zhu , H Liu , Z W Li , H J Qian , G Milano , Z Y Lu . J Comput Chem , 2013 . 34 ( 25 ): 2197 - 2211 . DOI:10.1002/jcc.23365http://doi.org/10.1002/jcc.23365.
0
浏览量
12
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构