浏览全部资源
扫码关注微信
中国石油化工股份有限公司北京化工研究院 北京 100013
张晓红, zhangxh.bjhy@sinopec.com Xiao-hong Zhang, E-mail:zhangxh.bjhy@sinopec.com
乔金樑, qiaojl.bjhy@sinopec.com Jin-liang Qiao, E-mail:qiaojl.bjhy@sinopec.com
纸质出版日期:2017-7,
收稿日期:2016-9-25,
修回日期:2016-10-31,
扫 描 看 全 文
王崧合, 赖金梅, 茹越, 张红彬, 张晓红, 乔金樑. 纳米SiO2对高抗冲聚丙烯树脂相结构与性能的影响[J]. 高分子学报, 2017,(7):1097-1104.
Song-he Wang, Jin-mei Lai, Yue Ru, Hong-bin Zhang, Xiao-hong Zhang, Jin-liang Qiao. Effect of Nano SiO2 on Phase Structure and Properties of Impact Polypropylene Copolymer Resin[J]. Acta Polymerica Sinica, 2017,(7):1097-1104.
王崧合, 赖金梅, 茹越, 张红彬, 张晓红, 乔金樑. 纳米SiO2对高抗冲聚丙烯树脂相结构与性能的影响[J]. 高分子学报, 2017,(7):1097-1104. DOI: 10.11777/j.issn1000-3304.2017.16299.
Song-he Wang, Jin-mei Lai, Yue Ru, Hong-bin Zhang, Xiao-hong Zhang, Jin-liang Qiao. Effect of Nano SiO2 on Phase Structure and Properties of Impact Polypropylene Copolymer Resin[J]. Acta Polymerica Sinica, 2017,(7):1097-1104. DOI: 10.11777/j.issn1000-3304.2017.16299.
提出一种使高抗冲聚丙烯树脂的韧性和刚性同时得到提高的新方法.以亲油性纳米SiO
2
改性高抗冲聚丙烯树脂,发现少量纳米SiO
2
可显著降低高抗冲聚丙烯树脂中乙丙橡胶相的粒径和聚丙烯相的球晶尺寸,进而使高抗冲聚丙烯的常温韧性、低温韧性、刚性和耐热性同时得到提高.研究还发现,结晶成核剂和纳米SiO
2
有协同效应,可使高抗冲聚丙烯的综合性能进一步得到提高.
A new method is reported in this paper that the toughness
stiffness and heat resistance of impact polypropylene copolymer (IPC) resin could be increased simultaneously by adding a small amount of hydrophobic nano-SiO
2
. According to the results of scanning electron microscopy (SEM) and polarized optical microscopy (POM)
a small amount of nano-SiO
2
can significantly reduce both the particle size of ethylene-propylene rubber and the spherulite size of polypropylene matrix in IPC; therefore
the stiffness
the heat resistance and the toughness of IPC at room temperature and low temperature can be improved simultaneously. Energy dispersive spectroscopy (EDS) results of the composite material indicate that the nano-SiO
2
particles are distributed uniformly in IPC resin. Tested in accordance with ASTM standard
the new composite material prepared in this new way shows that the flexural modulus and heat distortion temperature of IPC/nano-SiO
2
composite can gain a monotonical increase as much as 8% and 9.6%. It is also found that the nano-SiO
2
and the nucleating agent have synergy effect on IPC modification. When the content of nanoparticles reaches 0.7%
the impact strength gets an increase of 16.5%
the best performance among all samples. The particle sizes of ethylene-propylene rubber and spherulite size of polypropylene matrix in IPC are further reduced when nano-SiO
2
and nucleating agent are added into IPC together
which improve further the properties of IPC. The flexural modulus
flexural strength
Izod notched impact strength and heat distortion temperature of IPC are increased by 18%
15%
10% and 20% when 0.7% of SiO
2
and 0.3% of nucleating agent VP-101B are added into IPC resin. The experimental results show that
to modify IPC
use of the nano-particles and the nucleating agent together is a promising method to produce high performance IPC with high toughness
high stiffness and high heat resistance.
纳米SiO2高抗冲聚丙烯结构性能成核剂
Nano SiO2Impact polypropylene copolymerStructurePropertyNucleating agent
F M Mirabella . . Polymer , 1993 . 34 ( 8 ): 1729 - 1735 . DOI:10.1016/0032-3861(93)90333-6http://doi.org/10.1016/0032-3861(93)90333-6.
Karger-Kocsis J, ed. Polypropylene Structure, Blends and Composites:Volume 3 Composites. Chapman & Hall. London:Springer Science & Business Media, Springer Netherlands, 1995. 145-168
Jinliang Qiao , Xianzhi Xia , Wenbo Song , Meifang Guo , Shijun Zhang , Bingquan Mao . . Polymer Material Science Engineering , 2014 . 30 ( 2 ): 125 - 132.
乔 金樑 , 夏 先知 , 宋 文波 , 郭 梅芳 , 张 师军 , 毛 炳权 . . 高分子材料科学与工程 , 2014 . 30 ( 2 ): 125 - 132.
W Rungswang , P Saendee , B Thitisuk , T Pathaweeisariyakul , W Cheevasrirungruang . . J Appl Polym Sci , 2013 . 128 ( 5 ): 3131 - 3140 . DOI:10.1002/app.v128.5http://doi.org/10.1002/app.v128.5.
R T Quazi , S N Bhattacharya , E Kosior . . J Mater Sci , 1999 . 34 ( 3 ): 607 - 614 . DOI:10.1023/A:1004515300637http://doi.org/10.1023/A:1004515300637.
J W Lim , A Hassan , A R Rahmat , M U Wahit . . J Appl Polym Sci , 2006 . 99 ( 6 ): 3441 - 3450 . DOI:10.1002/(ISSN)1097-4628http://doi.org/10.1002/(ISSN)1097-4628.
C G Ma , Y L Mai , M Z Rong , H R Wen , M Q Zhang . . Compos Sci Technol , 2007 . 67 ( 14 ): 2997 - 3005 . DOI:10.1016/j.compscitech.2007.05.022http://doi.org/10.1016/j.compscitech.2007.05.022.
H Bai , Y Wang , Z Zhang , L Han , Y Li , L Liu , Z Zhou , Y Men . . Macromolecules , 2009 . 42 ( 17 ): 6647 - 6655 . DOI:10.1021/ma9001269http://doi.org/10.1021/ma9001269.
J Qiao , M Guo , L Wang , D Liu , X Zhang , L Yu , W Song , Y Liu . . Polym Chem-UK , 2011 . 2 ( 8 ): 1611 - 1623 . DOI:10.1039/c0py00352bhttp://doi.org/10.1039/c0py00352b.
J L Qiao . . Mater China , 2012 . 31 ( 2 ): 33 - 37.
H B Jiang , X H Zhang , J L Qiao . . Sci China Chem , 2012 . 55 ( 6 ): 1140 - 1147 . DOI:10.1007/s11426-012-4516-yhttp://doi.org/10.1007/s11426-012-4516-y.
F Luo , C Xu , N Ning , K Wang , H Deng , F Chen , Q Fu . . Polym Int , 2013 . 62 ( 2 ): 172 - 178 . DOI:10.1002/pi.2013.62.issue-2http://doi.org/10.1002/pi.2013.62.issue-2.
L Huang , R Zhan , Y Lu . . J Reinf Plast Compos , 2006 . 25 ( 9 ): 1001 - 1012 . DOI:10.1177/0731684406065131http://doi.org/10.1177/0731684406065131.
N Tokita . . Rubber Chem Technol , 1977 . 50 ( 2 ): 292 - 300 . DOI:10.5254/1.3535144http://doi.org/10.5254/1.3535144.
Edward P Moore Jr, ed. Polypropylene Handbook. Munich Vicnna New York:Hanser Publishers, 1996. 113-176
Y Zhu , Y Zhao , X Zhang , L Wang , X Wang , J Zhang , P Han , J Qiao . . Mater Lett , 2016 . 173 26 - 30 . DOI:10.1016/j.matlet.2016.03.007http://doi.org/10.1016/j.matlet.2016.03.007.
Y Zhu , X Zhang , M Guo , W Huang , J Yang , Z Liang , J Qiao . . Chinese J Polym Sci , 2013 . 31 ( 8 ): 1061 - 1065 . DOI:10.1007/s10118-013-1316-6http://doi.org/10.1007/s10118-013-1316-6.
F Chen , B Qiu , Y Shangguan , Y Song , Q Zheng . . Mater Design , 2015 . 69 56 - 63 . DOI:10.1016/j.matdes.2014.12.052http://doi.org/10.1016/j.matdes.2014.12.052.
S Wu . . Polymer , 1985 . 26 ( 12 ): 1855 - 1863 . DOI:10.1016/0032-3861(85)90015-1http://doi.org/10.1016/0032-3861(85)90015-1.
S Wu . . J Appl Polym Sci , 1988 . 35 ( 2 ): 549 - 561 . DOI:10.1002/app.1988.070350220http://doi.org/10.1002/app.1988.070350220.
S Wu . . Polym Eng Sci , 1990 . 30 ( 13 ): 753 - 761 . DOI:10.1002/(ISSN)1548-2634http://doi.org/10.1002/(ISSN)1548-2634.
S Wu . . Polym Int , 1992 . 29 ( 3 ): 229 - 247 . DOI:10.1002/(ISSN)1097-0126http://doi.org/10.1002/(ISSN)1097-0126.
C B Bucknall . . Polymer , 2007 . 48 1030 - 1041 . DOI:10.1016/j.polymer.2006.12.033http://doi.org/10.1016/j.polymer.2006.12.033.
A Lazzeri , C B Bucknall . . J Mater Sci , 1993 . 28 ( 24 ): 6799 - 6808 . DOI:10.1007/BF00356433http://doi.org/10.1007/BF00356433.
C B Bucknall , A Karpodinis , X C Zhang . . J Mater Sci , 1994 . 29 ( 13 ): 3377 - 3383 . DOI:10.1007/BF00352036http://doi.org/10.1007/BF00352036.
K Mezghani , R Anderson Campbell , P J Phillips . . Macromolecules , 1994 . 27 ( 4 ): 997 - 1002 . DOI:10.1021/ma00082a017http://doi.org/10.1021/ma00082a017.
0
浏览量
27
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构