浏览全部资源
扫码关注微信
中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
卢宇源, E-mail:yylu@ciac.ac.cn Yu-yuan Lu, E-mail:yylu@ciac.ac.cn
安立佳, E-mail:ljan@ciac.ac.cn Li-jia An, E-mail:ljan@ciac.ac.cn
纸质出版日期:2017-5,
收稿日期:2016-10-20,
修回日期:2016-11-22,
扫 描 看 全 文
阮永金, 王振华, 卢宇源, 安立佳. 高分子动力学的单链模型[J]. 高分子学报, 2017,(5):727-743.
Yong-jin Ruan, Zhen-hua Wang, Yu-yuan Lu, Li-jia An. Single Chain Models of Polymer Dynamics[J]. Acta Polymerica Sinica, 2017,(5):727-743.
阮永金, 王振华, 卢宇源, 安立佳. 高分子动力学的单链模型[J]. 高分子学报, 2017,(5):727-743. DOI: 10.11777/j.issn1000-3304.2017.16320.
Yong-jin Ruan, Zhen-hua Wang, Yu-yuan Lu, Li-jia An. Single Chain Models of Polymer Dynamics[J]. Acta Polymerica Sinica, 2017,(5):727-743. DOI: 10.11777/j.issn1000-3304.2017.16320.
高分子单链模型是高分子稀溶液理论研究的基本模型.对其进行深入地分析,不仅有助于解决高分子稀溶液体系中溶液黏度和分子链扩散等基本问题,而且能够增进人们对高分子链结构与溶液性质间关联性的理解.虽然基于经典连续性介质力学的流体动力学理论可以定性,甚至半定量地获得稀溶液的一些重要性质,但是,随着科学技术的发展,人们从分子水平上建立了许多描述高分子稀溶液性质的模型和理论,期望能够定量地描述高分子稀溶液的性质.本文以高分子稀溶液中3个典型的单链模型为例(包括:不含流体力学相互作用的Rouse模型、含二体流体力学相互作用的Zimm模型和含多体流体力学相互作用的部分穿透球模型),综述高分子稀溶液的重要性质,并详细地给出其动力学方程的推导过程及其重要的研究进展.特别是,对于Rouse模型,本文还将其预言结果拓展到了短链高分子流体体系;此外,还介绍了这一领域的关键科学问题、发展前景和研究方向.
Single chain models are the simplest molecular models for theoretical study on dilute polymer solutions. The corresponding results are useful for studying the basic dynamic properties
such as the intrinsic viscosity and self-diffusivity
and provide an important way of understanding the relationship between molecular architectures and the dilute solution properties. Earlier efforts are focused on searching for suitable constitutive equations based on principles of continuum mechanics. However
such constitutive models fail to provide a first-principle description of the polymer solutions. In order to quantitatively describe the experimental results
it is desirable to establish models or theories on a molecular level. In this review
we discuss three typical single chain models. First we begin with the first successful molecular model of polymer dynamics
Rouse model
in which each bead is connected by harmonic springs and experiences its own independent friction. There are no hydrodynamic interactions between beads. Since in polymer melts hydrodynamic interactions are screened by the other chains
the Rouse model can be used to describe the dynamics of chains in unentangled polymer melt. Then we turn to the Zimm model
which considers the motion of the polymer chains in solvent
where the hydrodynamic interaction between the segments of a chain plays a prominent role. As a result
both the polymer and the solvent molecules within the pervaded volume of the chain move together in dilute solution. Furthermore
we focus on the description of our theory for the intrinsic viscosity of polymers with arbitrary architectures
based on a partially permeable sphere model. The model introduces two phenomenological functions
the drag function and drainage function
which capture the long-range
multibody
accumulative hydrodynamic interactions at the mean-field level. Predictions from our theory are in good agreement with experimental data on all the polymer structures examined
ranging from linear
ring and stars to hyperbranched polymers as well as dendrimers. At the end of this review
we also briefly discuss the critical issues
development prospects and research directions in this field.
Rouse模型Zimm模型部分穿透球模型流体力学相互作用特性黏数
Rouse modelZimm modelPartially permeable sphere modelHydrodynamic interactionIntrinsic viscosity
P J Flory . Principles of Polymer Chemistry , : New York Cornell University , 1953 . 266 - 314.
H Yamakawa . Modern Theory of Polymer Solutions , : New York Harper and Row , 1971 . 257 - 399.
H Johannesson , B Schaub . Phys Rev A , 1987 . 35 ( 8 ): 3571 - 3574 . DOI:10.1103/PhysRevA.35.3571http://doi.org/10.1103/PhysRevA.35.3571.
M Doi , S F Edwards . The Theory of Polymer Dynamics , : New York Oxford University Press , 1986 . 91 - 137.
M Rubinstein , R H Colby . Polymer Physics , : New York Oxford University Press , 2003 . 197 - 206.
A Einstein . Ann Phys , 1911 . 339 ( 3 ): 591 - 592 . DOI:10.1002/(ISSN)1521-3889http://doi.org/10.1002/(ISSN)1521-3889.
P Debye . J Chem Phys , 1946 . 14 ( 10 ): 636 - 639 . DOI:10.1063/1.1724075http://doi.org/10.1063/1.1724075.
P Debye , A M Bueche . J Chem Phys , 1948 . 16 ( 6 ): 573 - 579 . DOI:10.1063/1.1746948http://doi.org/10.1063/1.1746948.
J R Schaefgen , P J Flory . J Am Chem Soc , 1948 . 70 ( 8 ): 2709 - 2718 . DOI:10.1021/ja01188a026http://doi.org/10.1021/ja01188a026.
B H Zimm , W H Stockmayer . J Chem Phys , 1949 . 17 ( 12 ): 1301 - 1314 . DOI:10.1063/1.1747157http://doi.org/10.1063/1.1747157.
P Debye , F Bueche . J Chem Phys , 1952 . 20 ( 8 ): 1337 - 1338 . DOI:10.1063/1.1700751http://doi.org/10.1063/1.1700751.
P E Rouse . J Chem Phys , 1953 . 21 ( 7 ): 1272 - 1280 . DOI:10.1063/1.1699180http://doi.org/10.1063/1.1699180.
B H Zimm , R W Kilb . J Polym Sci , 1959 . 37 ( 131 ): 19 - 42 . DOI:10.1002/pol.1959.1203713102http://doi.org/10.1002/pol.1959.1203713102.
V A Bloomfield . Science , 1968 . 161 ( 3847 ): 1212 - 1219 . DOI:10.1126/science.161.3847.1212http://doi.org/10.1126/science.161.3847.1212.
P J Flory . Science , 1975 . 188 ( 4195 ): 1268 - 1276 . DOI:10.1126/science.188.4195.1268http://doi.org/10.1126/science.188.4195.1268.
B H Zimm . Macromolecules , 1980 . 13 ( 3 ): 592 - 602 . DOI:10.1021/ma60075a022http://doi.org/10.1021/ma60075a022.
J F Douglas , J Roovers , K F Freed . Macromolecules , 1990 . 23 ( 18 ): 4168 - 4180 . DOI:10.1021/ma00220a022http://doi.org/10.1021/ma00220a022.
H C Brinkman . Physica , 1947 . 13 ( 8 ): 447 - 448 . DOI:10.1016/0031-8914(47)90030-Xhttp://doi.org/10.1016/0031-8914(47)90030-X.
H C Brinkman . Appl Sci Res , 1948 . 1 ( 2 ): 81 - 86.
F Wiegel , P Mijnlieff . Physica A , 1977 . 89 ( 2 ): 385 - 396 . DOI:10.1016/0378-4371(77)90112-1http://doi.org/10.1016/0378-4371(77)90112-1.
J G Kirkwood , J Riseman . J Chem Phys , 1948 . 16 ( 6 ): 565 - 573 . DOI:10.1063/1.1746947http://doi.org/10.1063/1.1746947.
B H Zimm . J Chem Phys , 1956 . 24 ( 2 ): 269 - 278 . DOI:10.1063/1.1742462http://doi.org/10.1063/1.1742462.
J G de la Torre , G D Echenique , A Ortega . J Phys Chem B , 2007 . 111 ( 5 ): 955 - 961 . DOI:10.1021/jp0647941http://doi.org/10.1021/jp0647941.
Y Y Lu , T F Shi , L J An , Z G Wang . Europhys Lett , 2012 . 97 ( 6 ): 64003 DOI:10.1209/0295-5075/97/64003http://doi.org/10.1209/0295-5075/97/64003.
Y Y Lu , T F Shi , L J An , L P Jin , Z G Wang . Soft Matter , 2010 . 6 ( 12 ): 2619 - 2622 . DOI:10.1039/c0sm00061bhttp://doi.org/10.1039/c0sm00061b.
J P Hansen , I R McDonald . Theory of Simple Liquids , : Amsterdam Elsevier , 1990 . 219 - 254.
P Langevin . CR Acad Sci Paris , 1908 . 146 530 - 533.
Likhtman A E, Viscoelasticity and Molecular Rheology. In:Polymer Science:A Comprehensive Reference, Vol. 1, Amsterdam:Elsevier BV, 2012. 133-179
Yuyuan Lu , Lijia An , Jian Wang . Acta Polymerica Sinica , 2016 . ( 6 ): 688 - 697 . http://www.gfzxb.org/CN/abstract/abstract14588.shtml.
卢 宇源 , 安 立佳 , 王 健 . 高分子学报 , 2016 . ( 6 ): 688 - 697 . http://www.gfzxb.org/CN/abstract/abstract14588.shtml.
T Iwao . Polymer Solutions:An Introduction to Physical Properties , : New York Wiley , 2002 . 167 - 274.
H Staudinger , R Nodzu . Berichte der deutschen chemischen Gesellschaft (A and B Series) , 1930 . 63 ( 3 ): 721 - 724 . DOI:10.1002/cber.v63:3http://doi.org/10.1002/cber.v63:3.
F Bueche . J Chem Phys , 1952 . 20 ( 12 ): 1959 - 1964 . DOI:10.1063/1.1700349http://doi.org/10.1063/1.1700349.
J D Ferry , R F Landel , M L Williams . J Appl Phys , 1955 . 26 ( 4 ): 359 - 362 . DOI:10.1063/1.1721997http://doi.org/10.1063/1.1721997.
N Fatkullin , T Shakirov , N Balakirev . Polym Sci Series A , 2010 . 52 ( 1 ): 72 - 81 . DOI:10.1134/S0965545X10010104http://doi.org/10.1134/S0965545X10010104.
S Q Wang , K F Freed . J Chem Phys , 1986 . 85 ( 10 ): 6210 - 6224 . DOI:10.1063/1.451487http://doi.org/10.1063/1.451487.
Y Hsü , P Schümmer . Rheol Acta , 1983 . 22 ( 4 ): 348 - 353 . DOI:10.1007/BF01333764http://doi.org/10.1007/BF01333764.
J J Freire , J G de la Torre . Chem Phys , 1980 . 49 ( 1 ): 139 - 146 . DOI:10.1016/0301-0104(80)85047-6http://doi.org/10.1016/0301-0104(80)85047-6.
S Fesciyan , M S Jhon , J S Dahler . J Polym Sci Polym Phys , 1980 . 18 ( 10 ): 2077 - 2082 . DOI:10.1002/pol.1980.180181007http://doi.org/10.1002/pol.1980.180181007.
S Q Wang , K F Freed . J Chem Phys , 1987 . 86 ( 5 ): 3021 - 3031 . DOI:10.1063/1.452057http://doi.org/10.1063/1.452057.
P G de Gennes . Macromolecules , 1976 . 9 ( 4 ): 587 - 593 . DOI:10.1021/ma60052a011http://doi.org/10.1021/ma60052a011.
Q Chen , G J Tudryn , R H Colby . J Rheol , 2013 . 57 ( 5 ): 1441 - 1462 . DOI:10.1122/1.4818868http://doi.org/10.1122/1.4818868.
C Maes , S R Thomas . Phys Rev E , 2013 . 87 ( 2 ): 022145 DOI:10.1103/PhysRevE.87.022145http://doi.org/10.1103/PhysRevE.87.022145.
B H Zimm , G M Roe , L F Epstein . J Chem Phys , 1956 . 24 ( 2 ): 279 - 280 . DOI:10.1063/1.1742463http://doi.org/10.1063/1.1742463.
A Einstein . Ann Phys , 1905 . 17 549 - 560.
C W Oseen . Acta Math , 1911 . 34 ( 1 ): 205 - 284.
J Rotne , S Prager . J Chem Phys , 1969 . 50 ( 11 ): 4831 - 4837 . DOI:10.1063/1.1670977http://doi.org/10.1063/1.1670977.
J G Kirkwood . J Polym Sci , 1954 . 12 ( 67 ): 1 - 14.
S F Edwards , K F Freed . J Chem Phys , 1974 . 61 ( 3 ): 1189 - 1202 . DOI:10.1063/1.1681993http://doi.org/10.1063/1.1681993.
S F Edwards , M Muthukumar . Macromolecules , 1984 . 17 ( 4 ): 586 - 596 . DOI:10.1021/ma00134a012http://doi.org/10.1021/ma00134a012.
Y Oono , M Kohmoto . J Chem Phys , 1983 . 78 ( 1 ): 520 - 528 . DOI:10.1063/1.444477http://doi.org/10.1063/1.444477.
T Tchesskaya . J Mol Liq , 2009 . 150 ( 1 ): 77 - 80.
H Löwe , P Müller , A Zippelius . J Chem Phys , 2005 . 122 ( 1 ): 014905 DOI:10.1063/1.1813433http://doi.org/10.1063/1.1813433.
R Wenczel , C Y Shew . J Chem Phys , 2001 . 115 ( 24 ): 11325 - 11332 . DOI:10.1063/1.1415441http://doi.org/10.1063/1.1415441.
F Vögtle , S Gestermann , R Hesse , H Schwierz , B Windisch . Prog Polym Sci , 2000 . 25 ( 7 ): 987 - 1041 . DOI:10.1016/S0079-6700(00)00017-4http://doi.org/10.1016/S0079-6700(00)00017-4.
D A Tomalia , J M Fréchet . J Polym Sci, Polym Chem , 2002 . 40 ( 16 ): 2719 - 2728 . DOI:10.1002/pola.10301http://doi.org/10.1002/pola.10301.
E R Gillies , J M Frechet . Drug Discov Today , 2005 . 10 ( 1 ): 35 - 43 . DOI:10.1016/S1359-6446(04)03276-3http://doi.org/10.1016/S1359-6446(04)03276-3.
Z Guan . J Am Chem Soc , 2002 . 124 ( 20 ): 5616 - 5617 . DOI:10.1021/ja025609+http://doi.org/10.1021/ja025609+.
Y Y Lu , L J An , Z G Wang . Macromolecules , 2013 . 46 ( 14 ): 5731 - 5740 . DOI:10.1021/ma400872shttp://doi.org/10.1021/ma400872s.
L W Li , Y Y Lu , L J An , C Wu . J Chem Phys , 2013 . 138 ( 11 ): 114908 DOI:10.1063/1.4795577http://doi.org/10.1063/1.4795577.
D Y Yan . Sci China Chem , 2015 . 58 ( 5 ): 835 - 838 . DOI:10.1007/s11426-015-5388-8http://doi.org/10.1007/s11426-015-5388-8.
Yuyuan Lu , Tongfei Shi , Lijia An . Acta Polymerica Sinica , 2011 . ( 9 ): 1060 - 1067 . http://www.gfzxb.org/CN/abstract/abstract13427.shtml.
卢 宇源 , 石 彤非 , 安 立佳 . 高分子学报 , 2011 . ( 9 ): 1060 - 1067 . http://www.gfzxb.org/CN/abstract/abstract13427.shtml.
0
浏览量
61
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构