浏览全部资源
扫码关注微信
吉林大学汽车材料教育部重点实验室 吉林大学材料科学与工程学院 长春 130025
薛兵, E-mail:xuebing2011@jlu.edu.cn Bing Xue, E-mail:xuebing2011@jlu.edu.cn
纸质出版日期:2017-8,
收稿日期:2016-11-9,
修回日期:2017-1-4,
扫 描 看 全 文
甄冉, 迟茜文, 王星元, 杨阔, 蒋引珊, 李芳菲, 薛兵. 聚氧化乙烯/高岭石聚合物电解质的制备与表征[J]. 高分子学报, 2017,(8):1312-1319.
Zhen Ran, Chi Qian-wen, Wang Xing-yuan, Yang Kuo, Jiang Yin-shan, Li Fang-fei, Xue Bing. Preparation and Characterization of Poly (ethylene-oxide)/Kaolinite Composite Electrolyte[J]. Acta Polymerica Sinica, 2017,(8):1312-1319.
甄冉, 迟茜文, 王星元, 杨阔, 蒋引珊, 李芳菲, 薛兵. 聚氧化乙烯/高岭石聚合物电解质的制备与表征[J]. 高分子学报, 2017,(8):1312-1319. DOI: 10.11777/j.issn1000-3304.2017.16332.
Zhen Ran, Chi Qian-wen, Wang Xing-yuan, Yang Kuo, Jiang Yin-shan, Li Fang-fei, Xue Bing. Preparation and Characterization of Poly (ethylene-oxide)/Kaolinite Composite Electrolyte[J]. Acta Polymerica Sinica, 2017,(8):1312-1319. DOI: 10.11777/j.issn1000-3304.2017.16332.
通过尿素对高岭石的插层及随后的超声脱除处理,制备了一种片层剥离的高岭石粉体,并将这种剥离高岭石与聚氧化乙烯/高氯酸锂(PEO/LiClO
4
)体系复合,制备出PEO/高岭石复合物.采用X射线衍射仪、红外光谱仪、扫描电子显微镜、透射电子显微镜、扫描量热仪、电化学工作站和万能材料试验机进行结构表征和性能测试.结果表明,尿素在高岭石层间的插层和脱除引起了高岭石片层的剥离,片层厚度小于50 nm.剥离高岭石在PEO/LiClO
4
体系中与PEO形成了强烈的氢键作用,促进了PEO结晶度的降低,进而提高复合物的离子电导率.含有20 wt%剥离高岭石填料的PEO/高岭石复合物的离子电导率达到6.0×10
-5
S/cm,与未复合的PEO/LiClO
4
相比,提高了一个数量级.复合物制备过程中的烘干温度对PEO的结晶度会产生一定的影响,95℃下的烘干处理能得到结晶度较低,离子电导率较高的复合物.此外,剥离高岭石的添加显著提高了聚合物的杨氏模量和拉伸强度,与未复合的PEO/LiClO
4
相比,杨氏模量和拉伸强度最大提高了256%和121%.
Kaolinite-urea intercalation complex was prepared using kaolinite as intercalation host and urea as intercalating agent. The kaolinite-urea intercalation complex was used as precursor to prepare exfoliated kaolinite by deintercalating urea molecules from the interlayers of kaolinite through ultrasonic treatment. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the as-prepared exfoliated kaolinite. A broad 001 diffraction of kaolinite with weak intensity showed the random orientation of kaolinite platelets. SEM micrograph confirmed the exfoliation of kaolinite particles with layer thickness of no more than 50 nm. The exfoliated kaolinite particles were used as filler to poly(ethylene-oxide)/LiClO
4
(PEO/LiClO
4
) system to prepare PEO/kaolinite composites
with the aim to improve the ion conductivity and mechanical property of the PEO matrix. SEM
transmission electron microscopy (TEM)
XRD and Fourier transform infrared spectroscopy (FTIR) were used to characterize the PEO/kaolinite composites. SEM and TEM micrographs exhibited a good dispersion of exfoliated kaolinite in PEO matrix. XRD results showed that the crystallinity of PEO was gradually decreasing with increased exfoliated kaolinite content. FTIR analysis indicated that the hydrogen bonding was formed between the oxygen atoms of PEO segments and the hydroxyl groups on kaolinite surface
and this interaction between PEO and kaolinite was beneficial to the decrease in crystallinity of PEO. In order to evaluate the effect of the exfoliated kaolinite on ion conductivity and mechanical property of PEO matrix
AC impedance measurement and mechanical test were carried out. The results indicated that the ion conductivity of the composites gradually increased with increased exfoliated kaolinite content and reached 6.0×10
-5
S/cm at filler concentration of 20 wt%. The formation of amorphous region around the exfoliated kaolinite was beneficial for the Li
+
ion conduction in PEO matrix. When the exfoliated kaolinite content reached 10 wt%
the formed amorphous regions were connected to each other to form a network for the transport of Li
+
in the interconnected amorphous regions
leading to a sharp increase in ion conductivity. Moreover
the prepared composites under different drying temperature exhibited different ion conductivity. The reason was attributed to the change of PEO crystallinity with drying temperature
and the change trend of the ion conductivity was consistent with that of PEO crystallinity. Under the drying temperature of 95℃
the as-prepared composite possessed high ion conductivity (6.8×10
-5
S/cm). In addition
the Young's modulus and tensile strength of the composites were improved because of the introduction of the exfoliated kaolinite into EPO matrix. The composites showed the maximal increase of 256% and 121% in Young's modulus and tensile strength
i.e
.
to 165.1 MPa and 6.743 MPa respectively
compared to PEO/LiClO
4
(46.3 and 3.047 MPa). Therefore
the exfoliated kaolinite was a promising filler to prepare PEO based polymer electrolyte.
高岭石聚氧化乙烯离子电导率力学性能
KaolinitePEOIon conductivityMechanical property
S Klongkan , J Pumchusak . . Electrochim Acta , 2015 . 161 171 - 176 . DOI:10.1016/j.electacta.2015.02.074http://doi.org/10.1016/j.electacta.2015.02.074.
Yang Chen , Huiwen Deng , Guang Yang , Qun Chen . . Acta Polymerica Sinica , 2006 . ( 6 ): 785 - 789 . http://www.gfzxb.org/CN/abstract/abstract8424.shtml.
陈 旸 , 邓 惠文 , 杨 光 , 陈 群 . . 高分子学报 , 2006 . ( 6 ): 785 - 789 . http://www.gfzxb.org/CN/abstract/abstract8424.shtml.
Mingxin Yu , Qiao Shi , Xiao Zhou , Yushun Yan , Chunrong Wan . . Acta Polymerica Sinica , 2002 . ( 1 ): 38 - 42 . http://www.gfzxb.org/CN/abstract/abstract9801.shtml.
于 明昕 , 石 桥 , 周 啸 , 严 玉顺 , 万 春荣 . . 高分子学报 , 2002 . ( 1 ): 38 - 42 . http://www.gfzxb.org/CN/abstract/abstract9801.shtml.
A R Polu , H W Rhee . . J Ind Eng Chem , 2016 . 37 347 - 353 . DOI:10.1016/j.jiec.2016.03.042http://doi.org/10.1016/j.jiec.2016.03.042.
E Ruiz-Hitzky , P Aranda . . Adv Mater , 1990 . 2 545 - 547 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095.
S Kim , E J Hwang , Y Jung , M Hana , S Park . . Colloid Surface A , 2008 . 313-314 216 - 219 . DOI:10.1016/j.colsurfa.2007.04.097http://doi.org/10.1016/j.colsurfa.2007.04.097.
H F Cheng , Q F Liu , X H Fan . . World J Eng , 2008 . 5 ( 4 ): 601 - 602.
P Mpofu , J Addai-Mensah , J Ralston . . J Colloid Interf Sci , 2004 . 271 145 - 156 . DOI:10.1016/j.jcis.2003.09.042http://doi.org/10.1016/j.jcis.2003.09.042.
M Valáková , M Rieder , V Matějka , P Čapková , A Slíva . . Appl Clay Sci , 2007 . 35 108 - 118 . DOI:10.1016/j.clay.2006.07.001http://doi.org/10.1016/j.clay.2006.07.001.
X Y Zhu , C J Yan , J Y Chen . . Appl Clay Sci , 2012 . 55 114 - 119 . DOI:10.1016/j.clay.2011.11.001http://doi.org/10.1016/j.clay.2011.11.001.
Q F Liu , S Zhang , H F Cheng , D Wang , X G Li , X J Hou , R L Frost . . J Therm Anal Calorim , 2014 . 117 189 - 196 . DOI:10.1007/s10973-014-3646-1http://doi.org/10.1007/s10973-014-3646-1.
R Zhen , Q W Chi , X Y Wang , K Yang , Y S Jiang , F F Li , B Xue . . J Appl Polym Sci , 2016 . DOI:10.1002/app.44226http://doi.org/10.1002/app.44226 .
M J Reddy , P P Chu , U V S Rao . . J Power Sources , 2006 . 158 614 - 619 . DOI:10.1016/j.jpowsour.2005.10.008http://doi.org/10.1016/j.jpowsour.2005.10.008.
D Ratna , S Divekar , A B Samui , B C Chakraborty , A K Banthia . . Polymer , 2006 . 47 4068 - 4074 . DOI:10.1016/j.polymer.2006.02.040http://doi.org/10.1016/j.polymer.2006.02.040.
E Burgaz , M Yazici , M Kapusuz , S H Alisir , H Ozcan . . Thermochim Acta , 2014 . 575 159 - 166 . DOI:10.1016/j.tca.2013.10.032http://doi.org/10.1016/j.tca.2013.10.032.
C Berthier , W Gorecki , M Minier , M B Armand , J M Chabagno , P Rigaud . . Solid State Ionics , 1983 . 11 91 - 95 . DOI:10.1016/0167-2738(83)90068-1http://doi.org/10.1016/0167-2738(83)90068-1.
Z J Zhang , L N Zhang , Y Li , H D Xu . . Polymer , 2005 . 46 129 - 136 . DOI:10.1016/j.polymer.2004.11.008http://doi.org/10.1016/j.polymer.2004.11.008.
Y P Ye , H B Chen , J S Wu , L Ye . . Polymer , 2007 . 48 6426 - 6433 . DOI:10.1016/j.polymer.2007.08.035http://doi.org/10.1016/j.polymer.2007.08.035.
0
浏览量
16
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构