浏览全部资源
扫码关注微信
1.纤维材料改性国家重点实验室 东华大学材料科学与工程学院 上海 201620
2.江苏恒康家居科技股份有限公司 南通 226500
相恒学, E-mail:hengxuexiang@163.com Heng-xue Xiang, E-mail:hengxuexiang@163.com
朱美芳, E-mail:zhumf@dhu.edu.cn Mei-fang Zhu, E-mail:zhumf@dhu.edu.cn
纸质出版日期:2017-7,
收稿日期:2016-12-28,
修回日期:2017-1-19,
扫 描 看 全 文
陈姿晔, 相恒学, 胡泽旭, 倪张根, 朱美芳. 异相成核和拉伸诱导对生物基PHBV复合纤维结晶结构与力学性能的影响[J]. 高分子学报, 2017,(7):1121-1129.
Zi-ye Chen, Heng-xue Xiang, Ze-xu Hu, Zhang-gen Ni, Mei-fang Zhu. Enhanced Mechanical Properties of Melt-spun Bio-based PHBV Fibers:Effect of Heterogeneous Nucleation and Drawing Process[J]. Acta Polymerica Sinica, 2017,(7):1121-1129.
陈姿晔, 相恒学, 胡泽旭, 倪张根, 朱美芳. 异相成核和拉伸诱导对生物基PHBV复合纤维结晶结构与力学性能的影响[J]. 高分子学报, 2017,(7):1121-1129. DOI: 10.11777/j.issn1000-3304.2017.16366.
Zi-ye Chen, Heng-xue Xiang, Ze-xu Hu, Zhang-gen Ni, Mei-fang Zhu. Enhanced Mechanical Properties of Melt-spun Bio-based PHBV Fibers:Effect of Heterogeneous Nucleation and Drawing Process[J]. Acta Polymerica Sinica, 2017,(7):1121-1129. DOI: 10.11777/j.issn1000-3304.2017.16366.
采用熔融纺丝法制备了聚(3-羟基丁酸酯-
co
-3-羟基戊酸酯)(PHBV)/二硫化钨(WS
2
)复合纤维.利用示差扫描量热仪(DSC)、热台偏光显微镜、二维广角射线衍射仪(2D-WXRD)、纤维强力仪研究了WS
2
异相成核作用和牵伸诱导作用对纤维的结晶结构和力学性能的影响.研究表明,WS
2
显著提高了PHBV的结晶温度,当使用2 wt% WS
2
时,复合材料的结晶温度提高到115~130 ℃,比纯PHBV(99~105 ℃)提高了约25 ℃.WS
2
不仅没有影响PHBV球晶的径向生长速率,且明显提高了PHBV/WS
2
复合材料的晶核密度,熔体成核活性
Φ
由1.0降低为0.49.随着牵伸倍率和WS
2
用量的增加,纤维的拉伸强度呈现出先增加后减小的趋势.当添加1 wt% WS
2
并采用单向牵伸3.8倍时,纤维中的晶体取向产生了
β
晶结构,使复合纤维的拉伸强度由纯PHBV的37 MPa提高至155 MPa,断裂伸长率由2.4%增加至45%.
Poly(3-hydroxybutyrate-
co
-3-hydroxyvalerate) (PHBV)
a biodegradable bio-based polyester
has a limited application in fibers because of its slow crystallization rate and large spherulite size. Therefore
the key to expand applications of PHBV fibers is to control its crystallization behavior. In consideration that the characteristics of the original bio-based materials PHBV will be changed after chemical modification
nano-hybrid technology is applied in this study to regulate heterogeneous nucleation behavior of PHBV after introducing nano-tungsten sulfide into PHBV system. In addition
drawing induced during melt crystallization process tends to change the crystalline structure of the polymers and thus to change the mechanical properties of PHBV fibers. Hence
effects of heterogeneous nucleation and draft induction on the crystal structure and the mechanical properties of the fibers were studied in this paper
via
differential scanning calorimeter (DSC)
polarizing microscope (POM) equipped with hot stage
two-dimensional wide-angle X-ray diffraction (2D-WXRD) and fiber strength tester. It was found that the crystallization temperature of PHBV increased obviously with the induction of WS
2
nanoparticle. When the content of WS
2
was 2 wt%
the crystallization temperature of the composite materials increased to 115-130℃
about 25℃ higher than that of neat PHBV. When WS
2
component was induced
the nucleation density of PHBV/WS
2
composite materials was enhanced significantly and the nucleation activity
Φ
of the resultant composite decreased from 1.0 to 0.49 without influencing the radial growth rate of PHBV spherulites. With the increase in draft rate and WS
2
content
the tensile strength of fibers increased first and then decreased. When the addition of WS
2
content was 1 wt% and a uniaxial draw of 3.8 times was adapted
the crystal orientation of the fibers was enhanced
and the
β
-form crystal structure was produced
and thus the tensile strength of composite fibers increased from 37 MPa for pure PHBV to 155 MPa and the elongation at break increased from 2.4% to 45%.
生物基聚酯PHBV二硫化钨异相成核牵伸诱导力学性能
BiopolyesterPHBVTungsten disulfideHeterogeneous nucleationDraw ratioMechanical property
S Wang , W Chen , H Xiang , J Yang , Z Zhou , M Zhu . . Polymers , 2016 . 8 ( 8 ): 273 DOI:10.3390/polym8080273http://doi.org/10.3390/polym8080273.
B Laycock , P Halley , S Pratt , A Werker , P Lant . . Prog Polym Sci , 2013 . 38 ( 3 ): 536 - 583.
Hengxue Xiang , Shichao Wang , Xiaoshuang Wen , Zhe Zhou , Meifang Zhu . . Acta Polymerica Sinica , 2014 . ( 1 ): 40 - 48 . http://www.gfzxb.org/CN/abstract/abstract14004.shtml.
相 恒学 , 王 世超 , 闻 晓霜 , 周 哲 , 朱 美芳 . . 高分子学报 , 2014 . ( 1 ): 40 - 48 . http://www.gfzxb.org/CN/abstract/abstract14004.shtml.
Xuemei Li , Jidong He . . Acta Polymerica Sinica , 2015 . ( 1 ): 41 - 48 . http://www.gfzxb.org/CN/abstract/abstract14230.shtml.
李 雪梅 , 贺 继东 . . 高分子学报 , 2015 . ( 1 ): 41 - 48 . http://www.gfzxb.org/CN/abstract/abstract14230.shtml.
M Joshi , B S Butola . . Polymer , 2004 . 45 ( 14 ): 4953 - 4968 . DOI:10.1016/j.polymer.2004.04.057http://doi.org/10.1016/j.polymer.2004.04.057.
L Q Wei , N M Stark , A G McDonald . . Green Chem , 2015 . 17 ( 10 ): 4800 - 4814 . DOI:10.1039/C5GC01568Ehttp://doi.org/10.1039/C5GC01568E.
A Salam , L A Lucia , H Jameel . . ACS Sustain Chem Eng , 2013 . 1 ( 12 ): 1584 - 1592 . DOI:10.1021/sc400226mhttp://doi.org/10.1021/sc400226m.
J P D Mesquita , C L Donnici , I F Teixeira , F V Pereira . . Carbohyd Polym , 2012 . 90 ( 1 ): 210 - 217 . DOI:10.1016/j.carbpol.2012.05.025http://doi.org/10.1016/j.carbpol.2012.05.025.
M Martinez-Sanz , M Villano , C Oliveira , M G E Albuquerque , M Majone , M Reis , A Lopez-Rubio , J M Lagaron . . New Biotechnol , 2014 . 31 ( 4 ): 364 - 376 . DOI:10.1016/j.nbt.2013.06.003http://doi.org/10.1016/j.nbt.2013.06.003.
H Y Yu , Z Y Qin , Z Zhou . . Prog Nat Sci Mater , 2011 . 21 ( 6 ): 478 - 484 . DOI:10.1016/S1002-0071(12)60086-0http://doi.org/10.1016/S1002-0071(12)60086-0.
H X Xiang , X S Wen , X H Miu , Y Li , Z Zhou , M F Zhu . . Prog Nat Sci Mater , 2016 . 26 ( 1 ): 58 - 64 . DOI:10.1016/j.pnsc.2016.01.007http://doi.org/10.1016/j.pnsc.2016.01.007.
H X Xiang , S H Chen , Y H Cheng , Z Zhou , M F Zhu . . Express Polym Lett , 2013 . 7 ( 9 ): 778 - 786 . DOI:10.3144/expresspolymlett.2013.75http://doi.org/10.3144/expresspolymlett.2013.75.
A M Diez-Pascual , A L Diez-Vicente . . ACS Appl Mater Inter , 2014 . 6 ( 12 ): 9822 - 9834 . DOI:10.1021/am502261ehttp://doi.org/10.1021/am502261e.
M Naffakh , C Marco , G Ellis . . Crystengcomm , 2014 . 16 ( 6 ): 1126 - 1135 . DOI:10.1039/C3CE41987Hhttp://doi.org/10.1039/C3CE41987H.
Salem D R. Structure formation in polymeric fibers:Hanser Verlag; 2001
W Phetwarotai , V Tanrattanakul , N Phusunti . . Chinese J Polym Sci , 2016 . 34 ( 9 ): 1129 - 1140 . DOI:10.1007/s10118-016-1834-0http://doi.org/10.1007/s10118-016-1834-0.
A Dobreva , I Gutzow . . J Non-Cryst Solids , 1993 . 162 ( 1-2 ): 1 - 12 . DOI:10.1016/0022-3093(93)90736-Hhttp://doi.org/10.1016/0022-3093(93)90736-H.
A Dobreva , I Gutzow . .J Non-Cryst Solids , 1993 . 162 ( 1 ): 13 - 25.
Q Lv , C Xu , D Wu , Z Wang , R Lan , L Wu . . Compos Part A-Appl S , 2017 . 92 17 - 26 . DOI:10.1016/j.compositesa.2016.10.035http://doi.org/10.1016/j.compositesa.2016.10.035.
Y Wang , S Chen , S Zhang , L Ma , G Shi , L Yang . . Thermochim Acta , 2016 . 627 68 - 76.
S Yang , Y Li , Y Y Liang , W J Wang , Y Luo , J Z Xu , Z M Li . . RSC Adv , 2016 . 6 ( 28 ): 23930 - 23941 . DOI:10.1039/C5RA26902Dhttp://doi.org/10.1039/C5RA26902D.
H X Xiang , W Chen , Z Y Chen , B Sun , M F Zhu . . Compos Sci Technol , 2017 . 142 207 - 213 . DOI:10.1016/j.compscitech.2017.02.016http://doi.org/10.1016/j.compscitech.2017.02.016.
T Iwata , Y Aoyagi , M Fujita , H Yamane , Y Doi , Y Suzuki , A Takeuchi , K Uesugi . . Macromol Rapid Commun , 2004 . 25 ( 11 ): 1100 - 1104 . DOI:10.1002/(ISSN)1521-3927http://doi.org/10.1002/(ISSN)1521-3927.
0
浏览量
26
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构