浏览全部资源
扫码关注微信
华南理工大学塑料橡胶装备及智能化研究中心 广州 510640
黄汉雄, E-mail:mmhuang@scut.edu.cn Han-xiong Huang, E-mail:mmhuang@scut.edu.cn
纸质出版日期:2017-8,
收稿日期:2017-1-5,
修回日期:2017-2-14,
扫 描 看 全 文
陈祥辉, 黄汉雄. 低含量聚乳酸对微孔发泡聚丁二酸丁二醇酯泡孔结构的改善[J]. 高分子学报, 2017,(8):1331-1338.
Chen Xiang-hui, Huang Han-xiong. Improving Cellular Structure of Microcellular Poly (butylene succinate)
陈祥辉, 黄汉雄. 低含量聚乳酸对微孔发泡聚丁二酸丁二醇酯泡孔结构的改善[J]. 高分子学报, 2017,(8):1331-1338. DOI: 10.11777/j.issn1000-3304.2017.17003.
Chen Xiang-hui, Huang Han-xiong. Improving Cellular Structure of Microcellular Poly (butylene succinate)
通过挤出制备了可生物降解聚丁二酸丁二醇酯(PBS)和3种聚乳酸(PLA)含量(7 wt%、15 wt%和20 wt%)的PBS/PLA共混物样品,采用超临界二氧化碳作为物理发泡剂对样品进行间歇发泡,研究发泡样品的泡孔结构,并分析其形成机理.在120℃发泡温度(
T
f
)下,借助PLA对PBS熔体黏弹性尤其是熔体强度的改善,获得了分布较均匀、形状较规则、直径较小(平均值约10 μm)的微孔;共混物发泡样品的直径分布明显变窄,且符合高斯分布,这归因于细小的PLA相较均匀地分布于PBS基体中.进一步地,研究
T
f
对PBS和PLA含量为15 wt%的PBS/PLA共混物发泡样品泡孔结构的影响.结果表明,加入15 wt%的PLA使PBS的
T
f
下限从115℃降低至110℃,并显著改善了较高
T
f
(120和125℃)下制备的发泡样品内泡孔结构的均匀性.
A new strategy was proposed to improve foaming properties of poly(butylene succinate) (PBS)
via
blending it with low content of poly(lactic acid) (PLA). Biodegradable PBS/PLA blend samples with PLA content of 7 wt%
15 wt% and 20 wt% and pure PBS sample were prepared using a single-screw extruder with a chaotic mixing screw developed in our group. The samples were then foamed using supercritical carbon dioxide as physical foaming agent in a batch process. The cellular structure of the foamed samples was investigated
and its formation mechanism was analyzed. At foaming temperature (
T
f
) of 120℃
the foamed PBS sample exhibited an irregular cellular structure and wider cell diameter distribution (5-30 μm). Adding low PLA content (7 wt%
15 wt% or 20 wt%) obviously improved the foaming properties of the PBS. Microcells were developed with more uniform distribution
more regular shape
and smaller diameter (with a mean value of about 10 μm) for all the foamed blend samples. This is attributed to improved storage modulus
complex viscosity and especially melt strength of the PBS induced by added PLA. Moreover
the cell diameters for the foamed blend samples exhibited a much narrower distribution (4-18 μm) and followed Gaussian distribution
resulting from good dispersion of the PLA microdomains. Further
the effect of the
T
f
on the cellular structure of microcellular samples of the PBS and the blend with 15 wt% of PLA was investigated. As for the PBS
the lower
T
f
limit for foaming was dictated by its higher crystallinity degree
whereas the upper one by its low melt strength. Specifically
the lower
T
f
limit was 115℃. When lowering the
T
f
to 110℃
only a few sparse cells appeared in the foamed PBS sample
which was inferred to be developed at the core of spherulite. Raising the
T
f
to 120 or 125℃
the wall of some cells was ruptured. Adding 15 wt% of PLA shifted the lower
T
f
limit of the PBS from 115℃ to 110℃
and obviously improved the cellular structure uniformity and decreased the cell diameters for the foamed samples prepared at relatively high
T
f
s (120 and 125℃).
PBS/PLA共混物熔体共混超临界二氧化碳发泡泡孔结构流变性能熔体强度
PBS/PLA blendMelt blendingSupercritical carbon dioxide foamingCellular structureRheological propertiesMelt strength
S Y Zhou , H D Huang , L Xu , Z Yang , G J Zhong , B S Hsiao , Z M Li . . ACS Sustain Chem Eng , 2016 . 4 ( 5 ): 2887 - 2897 . DOI:10.1021/acssuschemeng.6b00590http://doi.org/10.1021/acssuschemeng.6b00590.
Z Y Jing , X M Xu , H Q Chen , X H Li . Cyclodextrin Chemistry:Preparation and Application . Beijing:Chemical Industry Press , 2009 . 7 - 9.
G Li , R R Qi , J Q Lu , X L Hu , Y Luo , P K Jiang . . J Appl Polym Sci , 2013 . 127 ( 5 ): 3586 - 3594 . DOI:10.1002/app.37744http://doi.org/10.1002/app.37744.
H F Zhou , X D Wang , Z J Du , H Q Li , K J Yu . . Polym Eng Sci , 2015 . 55 ( 5 ): 988 - 994 . DOI:10.1002/pen.v55.5http://doi.org/10.1002/pen.v55.5.
S K Lim , S I Lee , S G Jang , K H Lee , H J Choi , I J Chin . . J Macromol Sci B , 2011 . 55 ( 6 ): 1171 - 1184.
S K Lim , J J Lee , S G Jang , S I Lee , K H Lee , H J Choi , I J Chin . . Polym Eng Sci , 2011 . 51 ( 7 ): 1316 - 1324 . DOI:10.1002/pen.v51.7http://doi.org/10.1002/pen.v51.7.
R A Gross , B Kalra . . Science , 2002 . 297 ( 5582 ): 803 - 897 . DOI:10.1126/science.297.5582.803http://doi.org/10.1126/science.297.5582.803.
J Zhou , X W Wang , K Duan C E Hua , W Zhang , J H Ji , X B Yang . . Iran Polym , 2013 . 22 ( 4 ): 264 - 275.
G Jiang , H X Huang , Z K Chen . . Polym-Plast Technol Eng , 2011 . 50 ( 10 ): 1035 - 1039 . DOI:10.1080/03602559.2011.557822http://doi.org/10.1080/03602559.2011.557822.
S D Zhang , H X Huang , G Jiang . . Polym Renew Resour , 2013 . 4 ( 4 ): 153 - 168.
H X Huang , H F Xu . . Polym Adv Technol , 2011 . 22 ( 6 ): 822 - 829 . DOI:10.1002/pat.v22.6http://doi.org/10.1002/pat.v22.6.
Yalin Zhong , Hanxiong Huang . . Acta Polymerica Sinica , 2014 . ( 6 ): 720 - 726 . http://www.gfzxb.org/CN/abstract/abstract14319.shtml.
钟 亚林 , 黄 汉雄 . . 高分子学报 , 2014 . ( 6 ): 720 - 726 . http://www.gfzxb.org/CN/abstract/abstract14319.shtml.
Linqiong Xu , Hanxiong Huang . . Acta Polymerica Sinica , 2013 . ( 11 ): 1357 - 1363 . http://www.gfzxb.org/CN/abstract/abstract13949.shtml.
许 琳琼 , 黄 汉雄 . . 高分子学报 , 2013 . ( 11 ): 1357 - 1363 . http://www.gfzxb.org/CN/abstract/abstract13949.shtml.
L Q Xu , H X Huang . . J Appl Polym Sci , 2012 . 125 ( 2 ): 272 - 277.
S Muke , I Ivanov , N Kao . . J Non-Newton Fluid , 2001 . 101 ( 1-3 ): 77 - 93 . DOI:10.1016/S0377-0257(01)00142-2http://doi.org/10.1016/S0377-0257(01)00142-2.
JY Nam , SS Ray , M Okamoto . . Macromolecules , 2003 . 36 ( 19 ): 7126 - 7131 . DOI:10.1021/ma034623jhttp://doi.org/10.1021/ma034623j.
M Oliviero , L Sorrentino , L Cafiero . . J Appl Polym Sci , 2015 . 132 ( 48 ): 42704 .
Xinhua Sun , Gang Li , Xia Liao , Jiasong He . . Acta Polymerica Sinica , 2004 . ( 1 ): 93 - 97 . http://www.gfzxb.org/CN/abstract/abstract8849.shtml.
孙 兴华 , 李 刚 , 廖 霞 , 何 嘉松 . . 高分子学报 , 2004 . ( 1 ): 93 - 97 . http://www.gfzxb.org/CN/abstract/abstract8849.shtml.
Y Di , S Iannace , M E Di . . Macromol Mater Eng , 2005 . 290 ( 11 ): 1083 - 1090 . DOI:10.1002/(ISSN)1439-2054http://doi.org/10.1002/(ISSN)1439-2054.
M Xanthos , M W Young , G P Karayannidis , D N Bikiaris . . Polym Eng Sci , 2001 . 41 ( 4 ): 643 - 655 . DOI:10.1002/(ISSN)1548-2634http://doi.org/10.1002/(ISSN)1548-2634.
M Mihai ,M A Huneault , B D Favis . . Polym Eng Sci , 2010 . 50 ( 3 ): 629 - 642 . DOI:10.1002/pen.21561http://doi.org/10.1002/pen.21561.
Y W Luo , C L Xin , Z P Yang . . J Appl Polym Sci , 2015 . 132 ( 15 ): 41801 .
X L Jiang , T Liu , Z M Xu . . J Supercrit Fluid , 2009 . 48 ( 2 ): 167 - 175 . DOI:10.1016/j.supflu.2008.10.006http://doi.org/10.1016/j.supflu.2008.10.006.
Z M Xu , X L Jiang , T Liu . . J Supercrit Fluid , 2007 . 41 ( 2 ): 299 - 310 . DOI:10.1016/j.supflu.2006.09.007http://doi.org/10.1016/j.supflu.2006.09.007.
C H Tsou , B J Kao , M C Suen . . Mater Res Innov , 2014 . 18 ( 2 ): 372 - 376.
0
浏览量
18
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构