浏览全部资源
扫码关注微信
国家同步辐射实验室 中国科学技术大学 合肥 230026
李良彬, E-mail:lbli@ustc.edu.cn Liang-bin Li, E-mail:lbli@ustc.edu.cn
纸质出版日期:2017-9,
收稿日期:2017-3-15,
修回日期:2017-4-13,
扫 描 看 全 文
杨皓然, 鞠见竹, 卢杰, 常家瑞, 苏凤梅, 李良彬. 剪切均匀性对流动诱导等规聚丙烯结晶的影响[J]. 高分子学报, 2017,(9):1462-1470.
Hao-ran Yang, Jian-zhu Ju, Jie Lu, Jia-rui Chang, Feng-mei Su, Liang-bin Li. Influence of Shear Homogeneity on Flow-induced Crystallization of Isotactic Polypropylene[J]. Acta Polymerica Sinica, 2017,(9):1462-1470.
杨皓然, 鞠见竹, 卢杰, 常家瑞, 苏凤梅, 李良彬. 剪切均匀性对流动诱导等规聚丙烯结晶的影响[J]. 高分子学报, 2017,(9):1462-1470. DOI: 10.11777/j.issn1000-3304.2017.17048.
Hao-ran Yang, Jian-zhu Ju, Jie Lu, Jia-rui Chang, Feng-mei Su, Liang-bin Li. Influence of Shear Homogeneity on Flow-induced Crystallization of Isotactic Polypropylene[J]. Acta Polymerica Sinica, 2017,(9):1462-1470. DOI: 10.11777/j.issn1000-3304.2017.17048.
固定应变和最终应变速率,采用瞬时和缓慢2种电机加速方式对样品施加剪切,研究了流场加载模式对样品流变和结晶行为的影响.实验结果显示缓慢加速能够消除剪切过程中流场的非均匀性,使样品取向度增加,提高流场对聚合物熔体的作用效果.同时,流动诱导结晶对于加速时间有依赖性.对于速率为17.7 s
-1
的剪切,加速时间为1 s时,熔体流动均匀且流动诱导的晶体取向最强,短加速时间(0.5 s)和长加速时间(1.5 s)样品的流动诱导结晶效果都弱于加速时间为1 s的样品.但是,对于不同剪切速率,其对应的最优加速时间不同.对于流动诱导结晶来说,加速时间应当作为一个重要参数来考虑,其背后的真实物理含义还需要进一步研究来说明.
Influence of shear homogeneity on rheology and flow-induced crystallization (FIC) behavior of polymer is investigated by contrasting the sudden startup shear with the slow shear rate ramp-up procedure. The shear experiments are performed
via
changing only the rate ramp-up time at a fixed shear rate of 17.7 s
-1
and a constant strain of 20. And the corresponding motor acceleration time is set to 0
0.5
1.0 and 1.5 s
respectively. Combining wide angle X-ray scattering and polarized microscopy characterization
this set of experiments is designed to study the rate ramp-up time dependence of the rheological properties and FIC at the same shear rate and strain. When the rate ramp-up time is 0.5 s
it is found that a slow acceleration cannot completely eliminate the flow inhomogeneity. The stress overshoot still occurs in the stress-strain curve and the sample orientation is only slightly improved. As the rate ramp-up time is further increased to 1.0 s
the stress overshoot disappears
indicating that the inhomogeneity induced by destruction of melt structures vanishes. In this case
the degree of sample orientation is further improved
and the amount of oriented crystals is increased. However
when the rate ramp-up time is 1.5 s
the effect of flow induced crystallization is weakened
which is indicated by a decrease in orientation degree and the amount of oriented structures. Results obtained sufficiently illustrate that the FIC is dependent on the rate ramp-up time. However
a slower rate ramp-up procedure is not always associated with a better the flow-induced crystallization. Actually
there exists an optimal rate ramp-up time for a fixed shear rate. In addition
the optimal rate ramp-up time is not the same for different shear rates. These results suggest that rate ramp-up time should be considered as a critical parameter for FIC. And the underling mechanism still needs further investigation.
均匀剪切速率上升时间流变结晶
Shear homogeneityRate ramp-up timeRheologyCrystallization
H Janeschitz-Kriegl , E Ratajski , M Stadlbauer . . Rheol Acta , 2003 . 42 355 - 364 . DOI:10.1007/s00397-002-0247-xhttp://doi.org/10.1007/s00397-002-0247-x.
X Sun , H Li , J Wang , S Yan . . Macromolecules , 2006 . 39 8720 - 8726 . DOI:10.1021/ma062105dhttp://doi.org/10.1021/ma062105d.
R H Somani , L Yang , L Zhu , B S Hsiao . . Polymer , 2005 . 46 8587 - 8623 . DOI:10.1016/j.polymer.2005.06.034http://doi.org/10.1016/j.polymer.2005.06.034.
O O Mykhaylyk , P Chambon , C Impradice , J P A Fairclough , N J Terrill , A J Ryan . . Macromolecules , 2010 . 43 2389 - 2405 . DOI:10.1021/ma902495zhttp://doi.org/10.1021/ma902495z.
F Z An , X Q Gao , J Lei , C Deng , Z M Li , K Z Shen . . Chinese J Polym Sci , 2015 . 33 688 - 696 . DOI:10.1007/s10118-015-1617-zhttp://doi.org/10.1007/s10118-015-1617-z.
P J Flory . . J Chem Phys , 1947 . 15 397 - 408 . DOI:10.1063/1.1746537http://doi.org/10.1063/1.1746537.
G S Yeh , K Hong . . Polym Eng Sci , 1979 . 19 395 - 400 . DOI:10.1002/(ISSN)1548-2634http://doi.org/10.1002/(ISSN)1548-2634.
M M Zhang , L Y Zha , H H Gao , Y J Nie , W B Hu . . Chinese J Polym Sci , 2014 . 32 1218 - 1223 . DOI:10.1007/s10118-014-1495-9http://doi.org/10.1007/s10118-014-1495-9.
S Coppola , N Grizzuti , P L Maffettone . . Macromolecules , 2001 . 34 5030 - 5036 . DOI:10.1021/ma010275ehttp://doi.org/10.1021/ma010275e.
J F Ru , S G Yang , D Zhou , H M Yin , J Lei , Z M Li . . Macromolecules , 2016 . 49 3826 - 3837 . DOI:10.1021/acs.macromol.6b00595http://doi.org/10.1021/acs.macromol.6b00595.
O O Mykhaylyk , P Chambon , R S Graham , J P A Fairclough , P D Olmsted , A J Ryan . . Macromolecules , 2008 . 41 1901 - 1904 . DOI:10.1021/ma702603vhttp://doi.org/10.1021/ma702603v.
K H Kim , A Isayev , K Kwon . . J Appl Polym Sci , 2005 . 95 502 - 523 . DOI:10.1002/(ISSN)1097-4628http://doi.org/10.1002/(ISSN)1097-4628.
R J Steenbakkers , G W Peters . . J Rheol , 2011 . 55 401 - 433 . DOI:10.1122/1.3545844http://doi.org/10.1122/1.3545844.
J Sun , Y Song , Q Zheng , H Tan , J Yu , H Li . . J Polym Sci, Part B:Polym Phys , 2007 . 45 2594 - 2602 . DOI:10.1002/(ISSN)1099-0488http://doi.org/10.1002/(ISSN)1099-0488.
Z Nie , W Yu , C Zhou . . J Rheol , 2016 . 60 1161 - 1179 . DOI:10.1122/1.4961483http://doi.org/10.1122/1.4961483.
S Q Wang , S Ravindranath , P Boukany . . Macromolecules , 2011 . 44 183 - 190 . DOI:10.1021/ma101223qhttp://doi.org/10.1021/ma101223q.
C Huang , Q Chen , R Weiss . . Macromolecules , 2016 . 49 9203 - 9214 . DOI:10.1021/acs.macromol.6b02057http://doi.org/10.1021/acs.macromol.6b02057.
J Cao , A E Likhtman . . Phys Rev Lett , 2012 . 108 028302 DOI:10.1103/PhysRevLett.108.028302http://doi.org/10.1103/PhysRevLett.108.028302.
S Q Wang , S Ravindranath , P Boukany , M Olechnowicz , R P Quirk , A Halasa , J Mays . . Phys Rev Lett , 2006 . 97 187801 DOI:10.1103/PhysRevLett.97.187801http://doi.org/10.1103/PhysRevLett.97.187801.
S Zhu , Z Wang , F Su , W Zhou , N Tian , X Li , L Li . . J Rheol , 2013 . 57 1281 - 1296 . DOI:10.1122/1.4812671http://doi.org/10.1122/1.4812671.
S Q Wang , S Ravindranath , Y Wang , P Boukany . . J Chem Phys , 2007 . 127 064903 DOI:10.1063/1.2753156http://doi.org/10.1063/1.2753156.
Y Wang , S Q Wang . . J Rheol , 2009 . 53 1389 - 1401 . DOI:10.1122/1.3208063http://doi.org/10.1122/1.3208063.
S Cheng , S Q Wang . . J Rheol , 2012 . 56 1413 - 1428 . DOI:10.1122/1.4740264http://doi.org/10.1122/1.4740264.
K Cui , L Meng , N Tian , W Zhou , Y Liu , Z Wang , J He , L Li . . Macromolecules , 2012 . 45 5477 - 5486 . DOI:10.1021/ma300338chttp://doi.org/10.1021/ma300338c.
R H Somani , B S Hsiao , A Nogales , H Fruitwala , S Srinivas , A H Tsou . . Macromolecules , 2001 . 34 5902 - 5909 . DOI:10.1021/ma0106191http://doi.org/10.1021/ma0106191.
Y H Chen , Y M Mao , Z M Li , B S Hsiao . . Macromolecules , 2010 . 43 6760 - 6771 . DOI:10.1021/ma101006ehttp://doi.org/10.1021/ma101006e.
0
浏览量
22
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构