浏览全部资源
扫码关注微信
化学工程联合国家重点实验室 浙江大学化学工程与生物工程学院 杭州 310027
介素云,E-mail: jiesy@zju.edu.cn Su-yun Jie, E-mail: jiesy@zju.edu.cn
纸质出版日期:2017-12-20,
收稿日期:2017-3-20,
修回日期:2017-3-30,
扫 描 看 全 文
戴璐, 周勤灼, 李伯耿, 介素云. 以高顺式聚丁二烯为软段的三嵌段共聚物的制备[J]. 高分子学报, 2017,(12):1930-1938.
Lu Dai, Qin-zhuo Zhou, Bo-geng Li, Su-yun Jie. Preparation of Triblock Copolymers with High
戴璐, 周勤灼, 李伯耿, 介素云. 以高顺式聚丁二烯为软段的三嵌段共聚物的制备[J]. 高分子学报, 2017,(12):1930-1938. DOI: 10.11777/j.issn1000-3304.2017.17052.
Lu Dai, Qin-zhuo Zhou, Bo-geng Li, Su-yun Jie. Preparation of Triblock Copolymers with High
从高顺式端羟基聚丁二烯(HTPB)出发,分别以
ε
-己内酯和苯乙烯为单体合成了2类以高顺式聚丁二烯为软段的三嵌段共聚物.以高顺式HTPB为大分子引发剂、辛酸亚锡为催化剂,引发
ε
-己内酯的开环聚合,合成了聚己内酯-
b
-聚丁二烯-
b
-聚己内酯三嵌段共聚物(CLBCL);通过高顺式HTPB末端羟基与2-溴代异丁酰溴(BBiB)间的酯化反应制备了ATRP大分子引发剂(BiB-PB-BiB),进而引发苯乙烯进行电子转移活化再生催化剂原子转移自由基聚合(ARGET ATRP)反应,合成了聚苯乙烯-
b
-聚丁二烯-
b
-聚苯乙烯三嵌段共聚物(SBS),反应具有较好的可控性,产物分子量分布较窄.通过红外光谱(FTIR)、核磁共振氢谱(
1
H-NMR)和碳谱(
13
C-NMR)、热重分析(TGA)和示差扫描量热分析(DSC)等对所制备共聚物的结构和性能进行了测试表征.TGA曲线表明,提高聚己内酯链段的含量,可在一定程度上提高CLBCL共聚物的热稳定性;SBS共聚物的热分解过程表现为一个阶段,与HTPB相比,其热稳定性略有提高.从CLBCL共聚物的DSC曲线上可明显观察到聚丁二烯链段的玻璃化转变温度和聚己内酯链段的熔点;SBS共聚物具有2个玻璃化转变温度,为-104.1和102.4℃,分别对应于聚丁二烯链段和聚苯乙烯链段的玻璃化转变温度.
Taking high
cis
-1
4 hydroxyl-terminated polybutadiene (HTPB) as a starting material
two kinds of triblock copolymers were successfully synthesized by polymerization of
ε
-caprolactone (
ε
-CL) and styrene. Polycaprolactone-
b
-polybutadiene-
b
-polycaprolactone triblock copolymer (CLBCL) was synthesized
via
the ring-opening polymerization of
ε
-CL with stannous octanoate[Sn(Oct)
2
] as the catalyst and HTPB as the macroinitiator. The length of PCL segments was controlled by changing the reaction time based on the living property of the ring-opening polymerization. Besides
the reaction between HTPB and 2-bromoisobutyryl bromide yielded the Atom Transfer Radical Polymerization (ATRP) macroinitiator (BiB-PB-BiB)
which was used for the preparation of the polystyrene-
b
-polybutadiene-
b
-polystyrenetriblock copolymers (SBS)
via
the Activators Regenerated by Electron Transfer for ATRP (ARGET ATRP) of styrene. The ARGET ATRP reaction was controllable and the molecular weight distribution of the copolymers was narrow. The structure of these triblock copolymers was characterized by Fourier transform infrared spectroscopy (FTIR)
nuclear magnetic resonance spectroscopy (
1
H-NMR and
13
C-NMR)
gel permeation chromatography (GPC)
and their thermal properties were tested by thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA analysis indicated that the thermal stability of the CLBCL triblock copolymers increased with the increase in PCL content in the copolymers. Only one thermal degradation stage was observed for the SBS triblock copolymers from the TGA curves and the thermal stability of copolymers was slightly better than HTPB precursors. In the DSC curves of CLBCL copolymers
the glass transition temperature at -106.0℃ for the PB segments and the melting temperature at 54.4℃ for the PCL segments were detected. The results of DSC analysis for the SBS triblock copolymers indicated that there were two glass transition temperatures at -104.1 and 102.4℃
which corresponded to the PB and the PS segments
respectively.
端羟基聚丁二烯己内酯苯乙烯大分子引发剂开环聚合电子转移活化再生催化剂原子转移自由基聚合(ARGET ATRP)
Hydroxyl-terminated polybutadieneε-CaprolactoneStyreneMacroinitiatorRing-opening polymerization (ROP)Activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP)
P S G Krishnan , K Ayyaswamy , S K. J Macromol Sci Nayak . Part A:Pure Appl Chem , 2013 . 50 128 - 138.
Na Zheng , Suyun Jie , Bogeng Li . Progress in Chemistry , 2016 . 28 665 - 672 . DOI:10.7536/PC151023http://doi.org/10.7536/PC151023.
郑 娜 , 介 素云 , 李 伯耿 . 化学进展 , 2016 . 28 665 - 672 . DOI:10.7536/PC151023http://doi.org/10.7536/PC151023.
Qian Cheng , Jizhao Liang . Special Purpose Rubber Products , 2013 . 34 ( 4 ): 72 - 76.
程 倩 , 梁 基照 . 特种橡胶制品 , 2013 . 34 ( 4 ): 72 - 76.
Song Dong , Xin Wang , Liping Gao , Yuhui Liu , Haijun Wang , Yan Li , Dongshen Jiang , Jianxiong Jiang . China Elastomerics , 2003 . 13 ( 3 ): 53 - 60.
董 松 , 王 新 , 高 丽萍 , 刘 宇辉 , 王 海军 , 李 艳 , 姜 东升 , 蒋 剑雄 . 弹性体 , 2003 . 13 ( 3 ): 53 - 60.
J C Brosse , D Derouet , F Epaillard , J C Soutif , G Legeay , K Dušek . Adv Polym Sci , 1986 . 81 167 - 223.
G M M Sadeghi , J Morshedian , M Barikani . React Funct Polym , 2006 . 66 255 - 266 . DOI:10.1016/j.reactfunctpolym.2005.08.001http://doi.org/10.1016/j.reactfunctpolym.2005.08.001.
J Chen , G Pan , Y Qi , J Yi , H Bai . Chinese J Polym Sci , 2010 . 28 715 - 720 . DOI:10.1007/s10118-010-9121-yhttp://doi.org/10.1007/s10118-010-9121-y.
Q Zhou , S Jie , B G Li . Ind Eng Chem Res , 2014 . 53 17884 - 17893 . DOI:10.1021/ie503652ghttp://doi.org/10.1021/ie503652g.
Q Zhou , S Jie , B G Li . Polymer , 2015 . 67 208 - 215 . DOI:10.1016/j.polymer.2015.04.078http://doi.org/10.1016/j.polymer.2015.04.078.
Qinzhuo Zhou , Zhe Cao , Suyun Jie , Bogeng Li . Acta Polymerica Sinica , 2016 . ( 3 ): 293 - 299 . DOI:10.11777/j.issn1000-3304.2016.15199http://doi.org/10.11777/j.issn1000-3304.2016.15199http://www.gfzxb.org/CN/abstract/abstract14428.shtml.
周 勤灼 , 曹 哲 , 介 素云 , 李 伯耿 . 高分子学报 , 2016 . ( 3 ): 293 - 299 . DOI:10.11777/j.issn1000-3304.2016.15199http://doi.org/10.11777/j.issn1000-3304.2016.15199http://www.gfzxb.org/CN/abstract/abstract14428.shtml.
Q Zhou , A Wang , L Dai , S Jie , B G Li . Polymer , 2016 . 107 306 - 315 . DOI:10.1016/j.polymer.2016.11.033http://doi.org/10.1016/j.polymer.2016.11.033.
Chunpeng Chai , Yunjun Luo , Sufang Guo , Guoping Li , He Chen . Chinese Journal of Energetic Materials , 2008 . 16 ( 3 ): 301 - 304.
柴 春鹏 , 罗 运军 , 郭 素芳 , 李 国平 , 陈 鹤 . 含能材料 , 2008 . 16 ( 3 ): 301 - 304.
F L Meng , S X Zheng , W A Zhang , H Q Li , Q Liang . Macromolecules , 2006 . 39 711 - 719 . DOI:10.1021/ma0518499http://doi.org/10.1021/ma0518499.
M Lemoine , C H Brachais , G Boni , L Brachais , J P Couvercelle . J Macromol Sci. Part A:Pure Appl Chem , 2010 . 47 794 - 803 . DOI:10.1080/10601325.2010.492041http://doi.org/10.1080/10601325.2010.492041.
N Y Kim , Y S Yun , J Y Lee , C Choochottiros , H R Pyo , I J Chin , H J Jin . Macromol Res , 2011 . 19 ( 9 ): 943 - 947 . DOI:10.1007/s13233-011-0906-9http://doi.org/10.1007/s13233-011-0906-9.
V Vasudevan , G. Sundararajan . Propell Explos Pyrot , 1999 . 24 295 - 300 . DOI:10.1002/(ISSN)1521-4087http://doi.org/10.1002/(ISSN)1521-4087.
K Subramanian . Eur Polym J , 1999 . 35 1403 - 1411 . DOI:10.1016/S0014-3057(98)00241-9http://doi.org/10.1016/S0014-3057(98)00241-9.
Y L Luo , X L Yang , F Xu , Y S Chen , X Zhao . Colloid Polym Sci , 2014 . 292 ( 5 ): 1061 - 1072 . DOI:10.1007/s00396-013-3149-9http://doi.org/10.1007/s00396-013-3149-9.
V Vasudevan , G Sundararajan . Appl Catal A:Gen , 1999 . 182 97 - 106 . DOI:10.1016/S0926-860X(98)00314-7http://doi.org/10.1016/S0926-860X(98)00314-7.
L M Pitet , M A Hillmyer . Macromolecules , 2009 . 42 3674 - 3680 . DOI:10.1021/ma900368ahttp://doi.org/10.1021/ma900368a.
L M Pitet , M A Amendt , M A Hillmyer . J Am Chem Soc , 2010 . 132 8230 - 8231 . DOI:10.1021/ja100985dhttp://doi.org/10.1021/ja100985d.
S Xiang , Q Zhang , G Zhang , W Jiang , Y Wang , H Zhou , Q Li , J Tang . Biomacromolecules , 2014 . 15 3112 - 3118 . DOI:10.1021/bm500723khttp://doi.org/10.1021/bm500723k.
C W Bielawski , T Morita , R H Grubbs . Macromolecules , 2000 . 33 678 - 680 . DOI:10.1021/ma990625lhttp://doi.org/10.1021/ma990625l.
M K Mahanthappa , F S Bates , M A Hillmyer . Macromolecules , 2005 . 38 7890 - 7894 . DOI:10.1021/ma051535lhttp://doi.org/10.1021/ma051535l.
W Jakubowski , K Min , K Matyjaszewski . Macromolecules , 2006 . 39 39 - 45 . DOI:10.1021/ma0522716http://doi.org/10.1021/ma0522716.
Lei Zhang , Chunfeng Wang , Fengjiao Chen , Shixin Du , Guowei Zhou . New Chemical Materials , 2012 . 40 ( 7 ): 21 - 24.
张 磊 , 王 春凤 , 陈 奉娇 , 杜 施鑫 , 周 国伟 . 化工新型材料 , 2012 . 40 ( 7 ): 21 - 24.
0
浏览量
12
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构