浏览全部资源
扫码关注微信
四川大学化学学院 高分子材料工程国家重点实验室环保型高分子材料国家地方联合工程实验室 成都 610064
王玉忠, E-mail:yzwang@scu.edu.cn Yu-zhong Wang, E-mail:yzwang@scu.edu.cn
纸质出版日期:2017-7,
收稿日期:2017-3-31,
修回日期:2017-4-30,
扫 描 看 全 文
陈琳, 吴嘉宁, 倪延朋, 付腾, 吴志正, 汪秀丽, 王玉忠. 苯酰亚胺结构对PET阻燃抗熔滴及抑烟的贡献[J]. 高分子学报, 2017,(7):1207-1214.
Lin Chen, Jia-ning Wu, Yan-peng Ni, Teng Fu, Zhi-zheng Wu, Xiu-li Wang, Yu-zhong Wang. Contribution of Phenylimide to Flame Retardancy, Anti-dripping and Smoke Suppression of PET[J]. Acta Polymerica Sinica, 2017,(7):1207-1214.
陈琳, 吴嘉宁, 倪延朋, 付腾, 吴志正, 汪秀丽, 王玉忠. 苯酰亚胺结构对PET阻燃抗熔滴及抑烟的贡献[J]. 高分子学报, 2017,(7):1207-1214. DOI: 10.11777/j.issn1000-3304.2017.17079.
Lin Chen, Jia-ning Wu, Yan-peng Ni, Teng Fu, Zhi-zheng Wu, Xiu-li Wang, Yu-zhong Wang. Contribution of Phenylimide to Flame Retardancy, Anti-dripping and Smoke Suppression of PET[J]. Acta Polymerica Sinica, 2017,(7):1207-1214. DOI: 10.11777/j.issn1000-3304.2017.17079.
通过本体聚合方法合成了一系列侧链含苯酰亚胺结构的聚对苯二甲酸乙二酯(PET)共聚酯.研究发现,苯酰亚胺单元的引入不仅提高了共聚酯的玻璃化转变温度(
T
g
)和高温成炭性,并且大大降低了共聚酯高温下的热分解速率.随着苯酰亚胺含量的增加,共聚酯表现出更高的氧指数(LOI)值和更好的阻燃抗熔滴效果.锥形量热测试结果表明,苯酰亚胺结构的引入可以有效地降低共聚酯的峰值热释放速率(p-HRR)、峰值烟释放速率(p-RSR)和总烟释放量(TSR).通过对纯PET和共聚酯燃烧测试后残炭的结构和形貌分析,发现苯酰亚胺结构有助于共聚酯形成石墨化程度更高的致密炭层,这些炭层起到隔热隔氧和抑制有机可燃烟气挥发的作用,在不引入传统阻燃剂的情况下,赋予共聚酯很好的本征阻燃性及抑烟性.
A phenylimide-containing monomer was first introduced into PET backbone by bulk copolymerization
and a series of inherently flame-retardant
anti-dripping and smoke-suppressed copolyesters
P(ET-
co
-BN)
n
where
n
denotes the molar part of BN per hundred mole of dimethyl terephthalate (DMT) (namely
BN:DMT=
n
:100)
were successfully synthesized. Thermogravimetric analysis (TGA) indicated that the introduction of the phenylimide group not only increased the char residue of the copolyesters at high temperatures
but also greatly decreased the thermal decomposition rate of the copolyesters. The initial decomposing temperature (
T
5%
) of the copolyesters showed a slight increase compared with that of PET
indicating that the original thermal stability was maintained. With increasing the proportion of phenylimide
the copolyesters exhibited higher glass transition temperature (
T
g
). Further more
the higher was the phenylimide content
the higher was the limiting oxygen index (LOI). When P(ET-
co
-BN)
20
was tested at a high oxygen concentration of 29%
flame propagation was obviously slowed and extinguished within 52 s. After LOI test
the top zone of P(ET-
co
-BN)
20
specimen was covered by intumescent char layer
and no dripping was observed. Compared with those of neat PET
the peak heat release rate (p-HRR)
peak release smoke rate (p-RSR) and total smoke release (TSR) of P(ET-
co
-BN)
20
obtained from cone calorimetry
were reduced by 51.5%
44.7% and 31.1%
respectively
indicating its inherently low flammability and smoke suppression. Raman spectroscopy indicated that the formation of a thermally stable graphitic structure was promoted by the phenylimide at high temperatures. It could also be proved by SEM that the char layer of the copolyester was compact and coherent
which took an active part in isolating the unburned polymer from heat source
cutting off oxygen and preventing the volatilization of flammable fragments
resulting in excellent inherent flame retardancy and smoke suppression. Without traditional flame retardant elements
such as chloride
bromine and phosphorus
this high-performance copolyester was only composed of carbon
nitrogen
hydrogen and oxygen
which would be really eco-friendly.
苯酰亚胺PET共聚酯抑烟性本征阻燃成炭性
PhenylimidePET CopolyesterFlame retardanceSmoke suppressionChar-forming
Yuzhong Wang . Flame-retardation Design of PET Fibers , : Chengdu Sichuan Science & Technology Press , 1994 . 10 - 18.
王 玉忠 . 聚酯纤维阻燃化设计 , : 成都 四川科学技术出版社 , 1994 . 10 - 18.
J Scheirs , T E Long . Modern polyesters , 1st ed : Bejing Chemical Industry Press , 2007 . 400 - 404.
Scheirs J , Long T E . 现代聚酯 , 第一版 : 北京 高等教育出版社 , 2007 . 400 - 404.
Deming Guo , Xinke Jing , Jianing Wu , Yingqing Ou , Feiyu Zhai , Li Chen , Yuzhong Wang . . Acta Polymerica Sinica , 2012 . ( 9 ): 1042 - 1046 . http://www.gfzxb.org/CN/abstract/abstract13731.shtml.
郭 德明 , 敬 新柯 , 吴 嘉宁 , 欧 影轻 , 翟 飞玉 , 陈 力 , 王 玉忠 . . 高分子学报 , 2012 . ( 9 ): 1042 - 1046 . http://www.gfzxb.org/CN/abstract/abstract13731.shtml.
S Molyneux , A A Stec , T R Hull . . Polym Degrad Stab , 2014 . 106 36 - 46 . DOI:10.1016/j.polymdegradstab.2013.09.013http://doi.org/10.1016/j.polymdegradstab.2013.09.013.
X K Jing , X S Wang , D M Guo , Y Zhang , F Y Zhai , X L Wang , L Chen , Y Z Wang . . J Mater Chem A , 2013 . 1 ( 32 ): 9264 - 9272 . DOI:10.1039/c3ta11267ehttp://doi.org/10.1039/c3ta11267e.
W J Kroenke . . J Mater Sci , 1986 . 21 ( 4 ): 1123 - 1133 . DOI:10.1007/BF00553241http://doi.org/10.1007/BF00553241.
Fang Lai , Hai Fu , Ou Zhao , Yonghang Zhang , Pei Li , Shimei Chen , Xijun Gu , Daming Ban . . Acta Polymerica Sinica , 2017 . ( 3 ): 1 - 8 . http://www.gfzxb.org/CN/abstract/abstract14636.shtml.
来 方 , 付 海 , 赵 欧 , 张 永航 , 李 霈 , 陈 仕梅 , 顾 锡军 , 班 大明 . . 高分子学报 , 2017 . ( 3 ): 1 - 8 . http://www.gfzxb.org/CN/abstract/abstract14636.shtml.
A Dasari , Z Z Yu , G P Cai , Y W Mai . . Prog Polym Sci , 2013 . 38 ( 9 ): 1357 - 1387 . DOI:10.1016/j.progpolymsci.2013.06.006http://doi.org/10.1016/j.progpolymsci.2013.06.006.
T Fu , D M Guo , J N Wu , X L Wang , L Chen , Y Z Wang . . Polym Chem , 2016 . 7 ( 8 ): 1584 - 1592 . DOI:10.1039/C5PY01938Ahttp://doi.org/10.1039/C5PY01938A.
Mengxian Ding . Polyimide:Chemistry, Relationship between Structure and Properties and Materials , : 2nd ed. Bejing Science Press , 2012 . 1 - 9.
丁 孟贤 . 聚酰亚胺:化学、结构与性能的关系及材料 , : 第二版.北京 科学出版社 , 2012 . 1 - 9.
D J Liaw , K L Wang , Y C Huang , K R Lee , J Y Lai , C S Ha . . Prog Polym Sci , 2012 . 37 ( 7 ): 907 - 974 . DOI:10.1016/j.progpolymsci.2012.02.005http://doi.org/10.1016/j.progpolymsci.2012.02.005.
Haiquan Guo , Haibo Yao , Xiaoye Ma , Xuepeng Qiu , Lianxun Gao . . Acta Polymerica Sinica , 2015 . ( 3 ): 356 - 362 . http://www.gfzxb.org/CN/abstract/abstract14262.shtml.
郭 海泉 , 姚 海波 , 马 晓野 , 邱 雪鹏 , 高 连勋 . . 高分子学报 , 2015 . ( 3 ): 356 - 362 . http://www.gfzxb.org/CN/abstract/abstract14262.shtml.
H B Zhao , L Chen , J C Yang , X G Ge , Y Z Wang . . J Mater Chem , 2012 . 22 ( 37 ): 19849 - 19857 . DOI:10.1039/c2jm34376bhttp://doi.org/10.1039/c2jm34376b.
A Sadezky , H Muckenhuber , H Grothe , R Niessner , U Pöschl . . Carbon , 2005 . 43 ( 8 ): 1731 - 1742 . DOI:10.1016/j.carbon.2005.02.018http://doi.org/10.1016/j.carbon.2005.02.018.
W Yang , W J Sun , W Chu , C F Jiang , J Wen . . Chin Chem Lett , 2012 . 23 ( 3 ): 363 - 366 . DOI:10.1016/j.cclet.2012.01.006http://doi.org/10.1016/j.cclet.2012.01.006.
M Inagaki , S Harada , T Sato , T Nakajima , Y Horino , K Morita . . Carbon , 1989 . 27 ( 2 ): 253 - 257 . DOI:10.1016/0008-6223(89)90131-0http://doi.org/10.1016/0008-6223(89)90131-0.
0
浏览量
180
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构