浏览全部资源
扫码关注微信
青岛科技大学高分子科学与工程学院 橡塑材料与工程教育部重点实验室 青岛 266042
史新妍, E-mail: lindashi88@qust.edu.cnXin-yan Shi, E-mail: lindashi88@qust.edu.cn
纸质出版日期:2018-3-20,
收稿日期:2017-4-11,
修回日期:2017-5-22,
扫 描 看 全 文
肖雅, 曲明, 史新妍. 聚降冰片烯/聚乳酸共混物形状记忆效应的研究[J]. 高分子学报, 2018,(3):402-409.
Ya Xiao, Ming Qu, Xin-yan Shi. Studies on Shape Memory Effect of Polynorbornene/Poly(lactic acid) Blends[J]. Acta Polymerica Sinica, 2018,(3):402-409.
肖雅, 曲明, 史新妍. 聚降冰片烯/聚乳酸共混物形状记忆效应的研究[J]. 高分子学报, 2018,(3):402-409. DOI: 10.11777/j.issn1000-3304.2017.17085.
Ya Xiao, Ming Qu, Xin-yan Shi. Studies on Shape Memory Effect of Polynorbornene/Poly(lactic acid) Blends[J]. Acta Polymerica Sinica, 2018,(3):402-409. DOI: 10.11777/j.issn1000-3304.2017.17085.
将聚降冰片烯(PNB)和聚乳酸(PLA)按照PNB/PLA(80/20)、(70/30)、(60/40)、(50/50)4种不同质量配比进行共混,采用X射线衍射(XRD)、动态力学分析(DMA)、示差扫描量热分析(DSC)等对共混物基本性能进行表征,同时采用DMA-Q800对其形状记忆效应进行探究.结果显示:4种共混物均有明显屈服现象,随着PLA含量的增加,屈服现象越明显;PNB/PLA共混物出现2个玻璃化转变温度(
T
g
),且不随共混物配比变化而变化;4种共混物均在2
θ
=18.45º 附近出现特征衍射峰,且其结晶度随PNB含量的减少而降低;随PNB含量的增多4种共混物的形状记忆性能提高.对于PNB/PLA(80/20),在双重形状记忆中,其形状固定率为99.88%,形状恢复率为81.04%;在三重形状记忆中,总固定率和恢复率分别为98.83%和94.26%.
Temperature responsive shape memory polymers (SMPs) find important applications in automotive
military
biomedical and other fields. In particular
SMPs responsive to human body temperature are highly desired for biomedical applications. Polynorbornene (PNB) has a
T
g
around human body temperature
exhibiting excellent shape memory properties
whereas poly(lactic acid) (PLA) has attracted great interest in biomedical fields due to its nontoxic and bioresorbable characteristics. Therefore
it is of great significance to explore the possibility of combining advantages of PNB and PLA. In this work
a simple blending strategy was adopted at varying weight ratios
and the shape memory
thermal and mechanical properties of the resultant blends were studied. The results showed that PLA promoted blend yield
and crystallization of PNB favored shape fixation and shape recovery. For PNB/PLA=80/20 blend
the shape fixation rate was 99.88% and the shape recovery rate was 81.04% with the average shape recovery rate of 1.2%/min in the double shape memory. The total shape fixation rate and shape recovery rate were 98.83% and 94.26%
respectively
in the triple shape memory. In PNB/PLA blends
there was a certain interaction between the molecules
which limited
to a certain extent
the movement of the two polymer chains and reduced the crystallization of PLA. When the temperature was over 100 ℃
cold crystallization of PLA appeared in the blends
and this cold crystallization degree increased with decreased PNB. With increased PNB content
PNB/PLA blend became more ductile
the elongation at break increased from a few percent to more than 200%
and the forced elastic deformation occurred
which were favorable for the shape fixation. In the blends
the super-macromolecular chains of PNB were intertwined
resulting in a large number of entanglement points
namely
physical cross-linking points in the materials
which could make the polymer chain movement seriously blocked and their wide range of slippage hampered
so as to provide the driving force for the shape recovery and to improve the shape recovery performance of the blends.
聚降冰片烯聚乳酸形状记忆应力松弛结晶
PolynorbornenePoly(lactic acid)Shape memory effectsStress relaxationCrystallization
J Hu , Y Zhu , H Huang , J Lu . . Prog Polym Sci , 2012 . 37 ( 12 ): 1720 - 1763 . DOI:10.1016/j.progpolymsci.2012.06.001http://doi.org/10.1016/j.progpolymsci.2012.06.001.
D Ratna , J Karger-Kocsis . . J Mater Sci , 2008 . 43 ( 1 ): 254 - 269 . DOI:10.1007/s10853-007-2176-7http://doi.org/10.1007/s10853-007-2176-7.
Guangming Zhu . . Engineering Plastics Application , 2002 . 30 ( 8 ): 61 - 63 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcslyy200208018.
朱 光明 . . 工程塑料应用 , 2002 . 30 ( 8 ): 61 - 63 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcslyy200208018.
F EI Feninat , G Laroche , M Fiset , D Mantovani . . Adv Eng Mater , 2002 . 4 ( 3 ): 91 - 104 . DOI:10.1002/1527-2648(200203)4:3<>1.0.CO;2-Ihttp://doi.org/10.1002/1527-2648(200203)4:3<>1.0.CO;2-I.
A Lendlein , S Kelch . . Angew Chem Int Ed , 2002 . 41 ( 12 ): 2034 - 2057 . DOI:10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-Mhttp://doi.org/10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M.
G Liu , X Ding , Y Cao , Z Zheng , Y Peng . . Macromol Rapid Commun , 2005 . 26 ( 8 ): 649 - 652 . DOI:10.1002/(ISSN)1521-3927http://doi.org/10.1002/(ISSN)1521-3927.
C Wischke , A Lendlein . . Pharm Res , 2010 . 27 ( 4 ): 527 - 529 . DOI:10.1007/s11095-010-0062-5http://doi.org/10.1007/s11095-010-0062-5.
S I Gunes , S C Jana . . J Nanosci Nanotechnol , 2008 . 8 ( 4 ): 1616 - 1637 . DOI:10.1166/jnn.2008.038http://doi.org/10.1166/jnn.2008.038.
Bo Song . . Liaoning Chemical Industry , 1986 . ( 6 ): 30 - 34 . http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lnhg198606006&dbname=CJFD&dbcode=CJFQ.
宋 波 . . 辽宁化工 , 1986 . ( 6 ): 30 - 34 . http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lnhg198606006&dbname=CJFD&dbcode=CJFQ.
D Yang , W Huang , J Yu , J Jiang , L Zhang , M Xie . . Polymer , 2010 . 51 ( 22 ): 5100 - 5106 . DOI:10.1016/j.polymer.2010.09.009http://doi.org/10.1016/j.polymer.2010.09.009.
D Yang , D Gao , C Zeng , J Jiang , M Xie . . React Funct Polym , 2011 . 71 ( 11 ): 1096 - 1101 . DOI:10.1016/j.reactfunctpolym.2011.08.009http://doi.org/10.1016/j.reactfunctpolym.2011.08.009.
Y Shao , C Lavigueur , X Zhu . . Macromolecules , 2012 . 45 ( 45 ): 1924 - 1930 . http://pubs.acs.org/doi/pdf/10.1021/ma202506b.
Thomas F A Haselwander , W Heitz , Stefan A Krügel , Joachim H Wendorff . . Macromol Chem Phys , 1996 . 197 ( 10 ): 3435 - 3453 . DOI:10.1002/macp.1996.021971029http://doi.org/10.1002/macp.1996.021971029.
Tiejun Shi , Zhixian Dong . . New Chemical Materials , 2001 . 29 ( 5 ): 13 - 16 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl200105004.
史 铁钧 , 董 智贤 . . 化工新型材料 , 2001 . 29 ( 5 ): 13 - 16 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl200105004.
Rong Cheng , Xin Qian . . Chemical Industry and Engineering Progress , 2002 . 21 ( 11 ): 824 - 826 . DOI:10.3321/j.issn:1000-6613.2002.11.007http://doi.org/10.3321/j.issn:1000-6613.2002.11.007.
程 蓉 , 钱 欣 . . 化工进展 , 2002 . 21 ( 11 ): 824 - 826 . DOI:10.3321/j.issn:1000-6613.2002.11.007http://doi.org/10.3321/j.issn:1000-6613.2002.11.007.
Shuiqing Jin , Hua Xia , Yuerong Liang . . New Chemical Materials , 2007 . 35 ( 1 ): 61 - 63 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl200701024.
金 水清 , 夏 华 , 梁 悦荣 . . 化工新型材料 , 2007 . 35 ( 1 ): 61 - 63 . http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxxcl200701024.
K M Nampoothiri , N R Nair , R P John . . Bioresource Technol , 2010 . 101 ( 22 ): 8493 - 8501 . DOI:10.1016/j.biortech.2010.05.092http://doi.org/10.1016/j.biortech.2010.05.092.
A P Mathew , K Oksman , M Sain . . J Appl Polym Sci , 2005 . 97 ( 5 ): 2014 - 2025 . DOI:10.1002/(ISSN)1097-4628http://doi.org/10.1002/(ISSN)1097-4628.
K Sakurai , T Kashiwagi , T Takahashi . . J Appl Polym Sci , 1993 . 47 ( 5 ): 937 - 940 . DOI:10.1002/app.1993.070470521http://doi.org/10.1002/app.1993.070470521.
X Jing , H Y Mi , X F Peng , L S Turng . . Polym Eng Sci , 2015 . 55 ( 1 ): 70 - 80 . DOI:10.1002/pen.v55.1http://doi.org/10.1002/pen.v55.1.
0
浏览量
22
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构