浏览全部资源
扫码关注微信
四川大学高分子科学与工程学院 成都 610065
刘正英, E-mail:liuzhying@scu.edu.cn Zheng-ying Liu, E-mail:liuzhying@scu.edu.cn
纸质出版日期:2017-8,
收稿日期:2017-4-17,
修回日期:2017-5-17,
扫 描 看 全 文
邹会昭, 张习, 郑少笛, 杨伟, 刘正英, 杨鸣波, 冯建明. 具有高灵敏性且稳定可重复的正温度系数效应的PVDF/CF导电复合材料[J]. 高分子学报, 2017,(8):1215-1219.
Zou Hui-zhao, Zhang Xi, Zheng Shao-di, Yang Wei, Liu Zheng-ying, Yang Ming-bo, Feng Jian-ming. PVDF/CF Conductive Composites with High Sensitivity and Stable Reproducibility of Positive Temperature Coefficient Effect[J]. Acta Polymerica Sinica, 2017,(8):1215-1219.
邹会昭, 张习, 郑少笛, 杨伟, 刘正英, 杨鸣波, 冯建明. 具有高灵敏性且稳定可重复的正温度系数效应的PVDF/CF导电复合材料[J]. 高分子学报, 2017,(8):1215-1219. DOI: 10.11777/j.issn1000-3304.2017.17090.
Zou Hui-zhao, Zhang Xi, Zheng Shao-di, Yang Wei, Liu Zheng-ying, Yang Ming-bo, Feng Jian-ming. PVDF/CF Conductive Composites with High Sensitivity and Stable Reproducibility of Positive Temperature Coefficient Effect[J]. Acta Polymerica Sinica, 2017,(8):1215-1219. DOI: 10.11777/j.issn1000-3304.2017.17090.
以碳纤维(CF)为填料,聚偏氟乙烯(PVDF)为基体,通过熔融共混法制备PVDF/CF导电复合材料.所得复合材料具有显著的正温度系数(PTC)效应,温度上升到聚合物熔点附近时,电阻率对温度变化敏感.在转折温度区间(155.5~171.0℃,
△
=15.5℃)内,其体积电阻率的增加速率约为1.3×10
5
Ω cm K
-1
.在不同CF含量下,复合材料表现出不同的PTC行为.随着CF含量的增加,其峰值电阻略有下降.高导电粒子含量下,无负温度系数(NTC)效应.在冷却循环过程,导电网络的重构性良好.复合材料即使经过多次热循环,依然表现出良好的PTC特性重现性.
Application of polymer based composites with positive temperature coefficient (PTC) effect is greatly limited because of the drawbacks such as slow change of the resistivity in the transition temperature range
low PTC intensity
poor PTC reproducibility. In this work
the composite composed of polyvinylidene fluoride (PVDF) as matrix and carbon fiber (CF) as conductive filler was prepared by melt mixing to obtain high PTC intensity and stable reproducibility of PTC effect. The resulted PVDF/CF composites
with CF content from 13.1 vol% to 18.2 vol%
which was above the percolation threshold of 3.93 vol%
showed remarkable PTC effect without significant negative temperature coefficient (NTC) effect during heating processed. A fast transition from conductor to insulator was obtained when the temperature was close to the melting point of PVDF matrix
namely
the increase rate of volume resistivity was 1.3×10
5
Ω cm K
-1
in the transition temperature range (155.5-171.0℃). To our knowledge
this study is the first to report such phenomena in CF filled composites. The transition temperature ranges for all composites
determined by the melt temperature range and melting point of PVDF matrix
were almost the same owing to the presence of CF
and showed no effect on the crystallization behaviour of PVDF matrix. The room temperature resistivity and PTC intensity of composites with low CF content showed dependences on the thermal-cooling cycles
but they showed almost the same pattern and PTC intensity for the composites with high CF content. Desired reconstruction of CF network in the PVDF melt during cooling process and the excellent PTC reproducibility were observed even after 9 thermal-cooling cycles.
聚偏氟乙烯碳纤维导电复合材料正温度系数效应转折温度区间
PVDFCarbon fiberConductive compositePositive temperature coefficient effectTransition temperature range
R Zhang , P Tang , J Li , D Xu , Y Bin . . Polymer , 2014 . 55 ( 8 ): 2103 - 2112 . DOI:10.1016/j.polymer.2014.02.065http://doi.org/10.1016/j.polymer.2014.02.065.
J Feng , C M Chan . . Polymer , 2000 . 41 7279 - 7282 . DOI:10.1016/S0032-3861(00)00095-1http://doi.org/10.1016/S0032-3861(00)00095-1.
C Zhang , C A Ma , P Wang , M Sumita . . Carbon , 2005 . 43 ( 12 ): 2544 - 2553 . DOI:10.1016/j.carbon.2005.05.006http://doi.org/10.1016/j.carbon.2005.05.006.
H P Xu , Z M Dang , M J Jiang , S H Yao , J Bai . . J Mater Chem , 2008 . 18 ( 2 ): 229 - 234 . DOI:10.1039/B713857Ahttp://doi.org/10.1039/B713857A.
H P Xu , Z M Dang , D H Shi , J B Bai . . J Mater Chem , 2008 . 18 ( 23 ): 2685 - 2690 . DOI:10.1039/b717591dhttp://doi.org/10.1039/b717591d.
Z Yu Zhao , W He , X X Chen . . Mater Lett , 2003 . 57 ( 20 ): 3082 - 3088 . DOI:10.1016/S0167-577X(02)01440-4http://doi.org/10.1016/S0167-577X(02)01440-4.
H Nakano , K Shimizu , S Takahashi , A Kono , T Ougizawa , H Horibe . . Polymer , 2012 . 53 ( 26 ): 6112 - 6117 . DOI:10.1016/j.polymer.2012.10.046http://doi.org/10.1016/j.polymer.2012.10.046.
H P Xu , Z M Dang . . Chem Phys Lett , 2007 . 438 ( 4-6 ): 196 - 202 . DOI:10.1016/j.cplett.2007.02.076http://doi.org/10.1016/j.cplett.2007.02.076.
H P Xu , Z M Dang , N C Bing , Y H Wu , D D Yang . . J Appl Phys , 2010 . 107 ( 3 ): 034105 DOI:10.1063/1.3289731http://doi.org/10.1063/1.3289731.
S L Jiang , Y Yu , J J Xie , L P Wang , Y K Zeng , M Fu , T Li . . J Appl Polym Sci , 2009 . 116 838 - 842.
K Prashantha , J H Lee . . J Macromol Sci A , 2011 . 48 ( 9 ): 737 - 741 . DOI:10.1080/10601325.2011.596056http://doi.org/10.1080/10601325.2011.596056.
K Y Tsao , C S Tsai , C Y Huang . . Surf Coat Technol , 2010 . 205 S279 - S285 . DOI:10.1016/j.surfcoat.2010.08.005http://doi.org/10.1016/j.surfcoat.2010.08.005.
J W Zha , W K Li , R J Liao , J Bai , Z M Dang . . J Mater Chem A , 2013 . 1 ( 3 ): 843 - 851 . DOI:10.1039/C2TA00429Ahttp://doi.org/10.1039/C2TA00429A.
KonoA , K Shimizu , H Nakano , GotoY , Y Kobayashi , T Ougizawa , H Horibe . . Polymer , 2012 . 53 ( 8 ): 1760 - 1764 . DOI:10.1016/j.polymer.2012.02.048http://doi.org/10.1016/j.polymer.2012.02.048.
L Qi , Siddaramaiah , H K Nam , Y Gye-Hyoung , H L Q Joong . . Composites Part B , 2009 . 40 ( 3 ): 218 - 224 . DOI:10.1016/j.compositesb.2008.11.002http://doi.org/10.1016/j.compositesb.2008.11.002.
L Shen , F Q Wang , H Yang , Q R Meng . . Polym Test , 2011 . 30 ( 4 ): 442 - 448 . DOI:10.1016/j.polymertesting.2011.03.007http://doi.org/10.1016/j.polymertesting.2011.03.007.
C Zhang , C A Ma , P Wang , M Sumita . . Carbon , 2005 . 43 ( 12 ): 2544 - 2553 . DOI:10.1016/j.carbon.2005.05.006http://doi.org/10.1016/j.carbon.2005.05.006.
0
浏览量
5
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构