浏览全部资源
扫码关注微信
高分子物理与化学国家重点实验室 中国科学院长春应用化学研究所 长春 130022
[ "陈全,男,1981年8月生.中国科学院长春应用化学研究所研究员. 2011年在日本京都大学工学院取得博士学位(导师:Hiroshi Watanabe教授),之后分别在京都大学和美国宾州州立大学(合作导师:Ralph Colby教授)从事博士后工作. 2015年4月入职中科院长春应化所高分子物理与化学国家重点实验室任研究员,并建立高分子流变学课题组. 2009年获日本学术振兴会研究员、2016年获中组部青年千人和TA公司颁发的国际杰出青年流变学者奖.现任中国流变学专业委员会委员.主要研究方向为高分子物理和流变学" ]
纸质出版日期:2017-8,
收稿日期:2017-4-19,
修回日期:2017-5-7,
扫 描 看 全 文
陈全. 含离子聚合物体系的动力学[J]. 高分子学报, 2017,(8):1220-1233.
Chen Quan. Dynamics of Ion-containing Polymers[J]. Acta Polymerica Sinica, 2017,(8):1220-1233.
陈全. 含离子聚合物体系的动力学[J]. 高分子学报, 2017,(8):1220-1233. DOI: 10.11777/j.issn1000-3304.2017.17093.
Chen Quan. Dynamics of Ion-containing Polymers[J]. Acta Polymerica Sinica, 2017,(8):1220-1233. DOI: 10.11777/j.issn1000-3304.2017.17093.
离子作用的可逆性赋予了含离子聚合物丰富的力学和电学性能,使其广泛应用在高抗冲材料、记忆材料、自修复材料和智能响应材料等新兴领域.本专论结合作者近年的研究工作,介绍了含离子聚合物体系的构效关系和分子流变学,从3个方面展开:第1部分介绍了对于含离子聚合物的离子聚集状态的调控,和离聚物与聚电解质的相互转化;第2部分介绍了离子高度聚集的无规离聚物丰富的线性黏弹性,重点介绍了非缠结体系在链均一个离子浓度附近区域的溶胶凝胶转变以及缠结体系在平均每个缠结链段一个离子浓度附近区域的单平台到双平台模量的转变;第3部分介绍了如何进行分子设计,使得含离子聚合物成为有效的离子传输介质.最后总结了该研究领域的科学问题和面临的挑战.
Ion-containing polymers refer to polymers with covalently bonded ionic groups. The strength of ionic interaction relies on the ionic species as well as the polarity of their surrounding medium
and thus can be tuned in a wide range. When the energy approaches the thermal energy
association and dissociation of the ionic interaction would enter a time window of our observation and thus the interaction becomes reversible. The reversibility enables the ion-containing polymers to exhibit rich rheological and dielectric properties
so as to be applied in varied novel materials including impact-resistant
shape-memory
self-healing and intelligent materials. This review highlights recent progresses on understanding the structure-property relationship and molecular rheology of the ion-containing polymers. Part I summarizes a relationship between the association status and interaction energy of ions and/or ionic dipoles. In particular
definitions of ionomer and polyelectrolyte have been given on a basis of relative strength of the electrostatic interaction and thermal energy. Morphological and dynamic changes have been explained along with an ionomer-to-polyelectrolyte transition though introducing polar solvent into an ionomer. Part Ⅱ summarizes evolution of linear viscoelasticity of random ionomers (in which the ionic groups are randomly distributed) with the ion content. Particular interests have been placed on a sol-gel transition that occurs at averagely~one ion per chain and completed at averagely~two ions per chain for non-entangled random ionomers
and a single-to-double plateau transition that occurs at averagely~one ion per entanglement for entangled random ionomers. Both the theoretical and experimental developments have been summarized with respect to the improved understanding of the two transitions. Part Ⅲ summarizes the ion transportation within the ion-containing polymers
in particular molecular design to soften the ionic interaction as well as to increase the ion mobility
both should enhance the ion conductivity so as to facilitate the application of the ion-containing polymers in fields like ion battery separator membranes and ion-transport actuators.
离聚物聚电解质单离子导体结合能可逆性线性黏弹性
IonomerPolyelectrolyteSingle-ion conductorAssociation energyReversibilityLinear viscoelasticity
M Rubinstein , R H Colby . Polymer Physics , : New York Oxford University Press , 2003 .
A I U Grosberg , A R Khokhlov , P G D Gennes . Giant Molecules Here, There, and Everywhere , : 2nd ed. Hackensack World Scientific , 2011 .
Liu W J, Janik M J, Colby R H. First principles design of ionomers for facile ion Transport. In:Page K A, Soles C L, Runt J, eds. Polymers for Energy Storage and Delivery:Polyelectrolytes for Batteries and Fuel Cells. Washington, D.C.:American Chemical Society, 2012. 19-44
M B Jackson . Molecular and Cellular Biophysics , : New York Cambridge University Press , 2006 .
L H Zhang , N R Brostowitz , K A Cavicchi , R A Weiss . . Macromol React Eng , 2014 . 8 81 - 99 . DOI:10.1002/mren.201300181http://doi.org/10.1002/mren.201300181.
A Eisenberg , J S Kim . Introduction to Ionomers , : New York Wiley , 1998 .
P G de Gennes , P Pincus , R M Velasco , F Brochard . . Journal de Physique , 1976 . 37 1461 - 1473 . DOI:10.1051/jphys:0197600370120146100http://doi.org/10.1051/jphys:0197600370120146100.
P Dubin . Macromolecular Complexes in Chemistry and Biology , : Berlin, New York Springer-Verlag , 1994 .
A V Dobrynin , M Rubinstein . . Prog Polym Sci , 2005 . 30 1049 - 1118 . DOI:10.1016/j.progpolymsci.2005.07.006http://doi.org/10.1016/j.progpolymsci.2005.07.006.
R D Lundberg , R R Phillips . . J Polym Sci, Part B:Polym Phys , 1982 . 20 1143 - 1154 . DOI:10.1002/pol.1982.180200704http://doi.org/10.1002/pol.1982.180200704.
C W Lantman , W J Macknight , J S Higgins , D G Peiffer , S K Sinha , R D Lundberg . . Macromolecules , 1988 . 21 1339 - 1343 . DOI:10.1021/ma00183a026http://doi.org/10.1021/ma00183a026.
C W Lantman , W J Macknight , D G Peiffer , S K Sinha , R D Lundberg . . Macromolecules , 1987 . 20 1096 - 1101 . DOI:10.1021/ma00171a037http://doi.org/10.1021/ma00171a037.
J Wang , Z L Wang , D G Peiffer , W J Shuely , B Chu . . Macromolecules , 1991 . 24 790 - 798 . DOI:10.1021/ma00003a023http://doi.org/10.1021/ma00003a023.
Chakrabarty K, Shao P, Weiss R A. Solution properties of ionomers. In:Tant M R, Mauritz K A, Wilkes G L, eds. Ionomers:Synthesis, Structure, Properties and Applications. London, New York:Blackie Academic & Professional, 1997. 158-207
S Jousset , H Bellissent , J C Galin . . Macromolecules , 1998 . 31 4520 - 4530 . DOI:10.1021/ma980228vhttp://doi.org/10.1021/ma980228v.
Hara M, Polyelectrolytes in nonaqueous solutions. In:Radeva T, ed. Physical Chemistry of Polyelectrolytes. New York:Marcel Dekker, 2001. 245-279
A Sehgal , T A P Seery . . Macromolecules , 2003 . 36 10056 - 10062 . DOI:10.1021/ma034251ehttp://doi.org/10.1021/ma034251e.
A Eisenberg , M Rinaudo . . Polym Bull , 1990 . 24 671 - 671 . DOI:10.1007/BF00300165http://doi.org/10.1007/BF00300165.
Q Chen , N Bao , J H H Wang , T Tunic , S Liang , R H Colby . . Macromolecules , 2015 . 48 8240 - 8252 . DOI:10.1021/acs.macromol.5b01958http://doi.org/10.1021/acs.macromol.5b01958.
Z Zhang , C Liu , X Cao , J-H H Wang , Q Chen , R H Colby . . Macromolecules , 2017 . 50 963 - 970 . DOI:10.1021/acs.macromol.6b02225http://doi.org/10.1021/acs.macromol.6b02225.
G S Manning . . J Chem Phys , 1969 . 51 924 - 933 . DOI:10.1063/1.1672157http://doi.org/10.1063/1.1672157.
Q Liao , A V Dobrynin , M Rubinstein . . Macromolecules , 2003 . 36 3399 - 3410 . DOI:10.1021/ma0259968http://doi.org/10.1021/ma0259968.
W H Keesom . . Proc Acad Sci (Amsterdam) , 1915 . 18 636 - 646.
P W Atkins , J de Paula . Physical Chemistry , 7th ed : New York W.H. Freeman , 2002 .
A Eisenberg , B Hird , R B Moore . . Macromolecules , 1990 . 23 4098 - 4107 . DOI:10.1021/ma00220a012http://doi.org/10.1021/ma00220a012.
S H Kim , J S Kim . . Macromolecules , 2003 . 36 2382 - 2386 . DOI:10.1021/ma021744vhttp://doi.org/10.1021/ma021744v.
Q Chen , R H Colby . . Korea-Australia Rheol J , 2014 . 26 257 - 261 . DOI:10.1007/s13367-014-0030-4http://doi.org/10.1007/s13367-014-0030-4.
Q Chen , C W Huang , R A Weiss , R H Colby . . Macromolecules , 2015 . 48 1221 - 1230 . DOI:10.1021/ma502280ghttp://doi.org/10.1021/ma502280g.
C W Huang , C Wang , Q Chen , R H Colby , R A Weiss . . Macromolecules , 2016 . 49 3936 - 3947 . DOI:10.1021/acs.macromol.6b00620http://doi.org/10.1021/acs.macromol.6b00620.
C W Huang , Q Chen , R A Weiss . . Macromolecules , 2016 . 49 9203 - 9214 . DOI:10.1021/acs.macromol.6b02057http://doi.org/10.1021/acs.macromol.6b02057.
Z J Zhang , C Liu , X Cao , L C Gao , Q Chen . . Macromolecules , 2016 . 49 9192 - 9202 . DOI:10.1021/acs.macromol.6b02017http://doi.org/10.1021/acs.macromol.6b02017.
C P Lusignan , T H Mourey , J C Wilson , R H Colby . . Phys Rev E , 1995 . 52 6271 - 6280 . DOI:10.1103/PhysRevE.52.6271http://doi.org/10.1103/PhysRevE.52.6271.
C P Lusignan , T H Mourey , J C Wilson , R H Colby . . Phys Rev E , 1999 . 60 5657 - 5669 . DOI:10.1103/PhysRevE.60.5657http://doi.org/10.1103/PhysRevE.60.5657.
M Rubinstein , A N Semenov . . Macromolecules , 1998 . 31 1386 - 1397 . DOI:10.1021/ma970617+http://doi.org/10.1021/ma970617+.
A N Semenov , M Rubinstein . . Macromolecules , 1998 . 31 1373 - 1385 . DOI:10.1021/ma970616hhttp://doi.org/10.1021/ma970616h.
M Rubinstein , R H Colby , J R Gillmor . Dynamics of Near-critical Polymer Gels , : Berlin, New York Springer-Verlag , 1989 .
M Rubinstein , A N Semenov . . Macromolecules , 2001 . 34 1058 - 1068 . DOI:10.1021/ma0013049http://doi.org/10.1021/ma0013049.
M Rubinstein , R H Colby . . Macromolecules , 1994 . 27 3184 - 3190 . DOI:10.1021/ma00090a011http://doi.org/10.1021/ma00090a011.
L G Baxandall . . Macromolecules , 1989 . 22 1982 - 1988 . DOI:10.1021/ma00194a076http://doi.org/10.1021/ma00194a076.
Q Chen , S Liang , H S Shiau , R H Colby . . ACS Macro Lett , 2013 . 2 970 - 974 . DOI:10.1021/mz400476whttp://doi.org/10.1021/mz400476w.
Q Chen , G J Tudryn , R H Colby . . J Rheol , 2013 . 57 1441 - 1462 . DOI:10.1122/1.4818868http://doi.org/10.1122/1.4818868.
P G de Gennes . . J Chem Phys , 1971 . 55 572 - 579 . DOI:10.1063/1.1675789http://doi.org/10.1063/1.1675789.
L Leibler , M Rubinstein , R H Colby . . Macromolecules , 1991 . 24 4701 - 4707 . DOI:10.1021/ma00016a034http://doi.org/10.1021/ma00016a034.
M Doi , S F Edwards . The Theory of Polymer Dynamics , : Oxford Clarendon Press; Oxford University Press , 1986 .
H Watanabe . . Prog Polym Sci , 1999 . 24 1253 - 1403 . DOI:10.1016/S0079-6700(99)00029-5http://doi.org/10.1016/S0079-6700(99)00029-5.
T C B McLeish . . Adv Phys , 2002 . 51 1379 - 1527 . DOI:10.1080/00018730210153216http://doi.org/10.1080/00018730210153216.
W W Graessley . . Adv Polym Sci , 1982 . 47 67 - 117 . DOI:10.1007/BFb0038529http://doi.org/10.1007/BFb0038529.
Watanabe H, Matsumiya Y, Chen Q, Yu W. Rheological characterization of polymeric liquids. In:Matyjaszewski K, Möller M, eds. Polymer Science:A Comprehensive Reference. Amsterdam:Elsevier, 2012. 683-722
J Descloizeaux . . Macromolecules , 1990 . 23 4678 - 4687 . DOI:10.1021/ma00223a028http://doi.org/10.1021/ma00223a028.
W W Graessley . Polymeric Liquids and Networks:Dynamics and Rheology , : London, New York Garland Science , 2008 .
H Goldansaz , C A Fustin , M Wubbenhorst , E van Ruymbeke . . Macromolecules , 2016 . 49 1890 - 1902 . DOI:10.1021/acs.macromol.5b01535http://doi.org/10.1021/acs.macromol.5b01535.
M Ahmadi , L G D Hawke , H Goldansaz , E van Ruymbeke . . Macromolecules , 2015 . 48 7300 - 7310 . DOI:10.1021/acs.macromol.5b00733http://doi.org/10.1021/acs.macromol.5b00733.
E van Ruymbeke , R Keunings , V Stephenne , A Hagenaars , C Bailly . . Macromolecules , 2002 . 35 2689 - 2699 . DOI:10.1021/ma011271chttp://doi.org/10.1021/ma011271c.
Q Chen , Z J Zhang , R H Colby . . J Rheol , 2016 . 60 1031 - 1040 . DOI:10.1122/1.4955432http://doi.org/10.1122/1.4955432.
R A Weiss , W C Yu . . Macromolecules , 2007 . 40 3640 - 3643 . DOI:10.1021/ma070136ihttp://doi.org/10.1021/ma070136i.
J S Kim , K Yoshikawa , A Eisenberg . . Macromolecules , 1994 . 27 6347 - 6357 . DOI:10.1021/ma00100a018http://doi.org/10.1021/ma00100a018.
M B Armand , M J Duclot , P Rigaud . . Solid State Ionics , 1981 . 3-4 429 - 430 . DOI:10.1016/0167-2738(81)90126-0http://doi.org/10.1016/0167-2738(81)90126-0.
M B Armand . . Annu Rev Mater Sci , 1986 . 16 245 - 261 . DOI:10.1146/annurev.ms.16.080186.001333http://doi.org/10.1146/annurev.ms.16.080186.001333.
M Armand , J M Tarascon . . Nature , 2008 . 451 652 - 657 . DOI:10.1038/451652ahttp://doi.org/10.1038/451652a.
S C Dou , S H Zhang , R J Klein , J Runt , R H Colby . . Chem Mater , 2006 . 18 4288 - 4295 . DOI:10.1021/cm0603699http://doi.org/10.1021/cm0603699.
D Fragiadakis , S Dou , R H Colby , J Runt . . J Chem Phys , 2009 . 130 064907 DOI:10.1063/1.3063659http://doi.org/10.1063/1.3063659.
W Wang , W J Liu , G J Tudryn , R H Colby , K I Winey . . Macromolecules , 2010 . 43 4223 - 4229 . DOI:10.1021/ma100379jhttp://doi.org/10.1021/ma100379j.
W Wang , G J Tudryn , R H Colby , K I Winey . . J Am Chem Soc , 2011 . 133 10826 - 10831 . DOI:10.1021/ja201405vhttp://doi.org/10.1021/ja201405v.
S Liang , U H Choi , W Liu , J Runt , R H Colby . . Chem Mater , 2012 . 24 2316 - 2323 . DOI:10.1021/cm3005387http://doi.org/10.1021/cm3005387.
Q Chen , H Masser , H-S Shiau , S Liang , J Runt , P C Painter , R H Colby . . Macromolecules , 2014 . 47 3635 - 3644 . DOI:10.1021/ma5008144http://doi.org/10.1021/ma5008144.
S Liang , Q Chen , U H Choi , J Bartels , N Bao , J Runt , R H Colby . . J Mater Chem A , 2015 . 3 21269 - 21276 . DOI:10.1039/C5TA06042Ghttp://doi.org/10.1039/C5TA06042G.
U H Choi , S Liang , Q Chen , J Runt , R H Colby . . ACS Appl Mater Interfaces , 2016 . 8 3215 - 3225 . DOI:10.1021/acsami.5b10797http://doi.org/10.1021/acsami.5b10797.
N H LaFemina , Q Chen , K T Mueller , R H Colby . . Acs Energy Lett , 2016 . 1 1179 - 1183 . DOI:10.1021/acsenergylett.6b00545http://doi.org/10.1021/acsenergylett.6b00545.
N H LaFemina , Q Chen , R H Colby , K T Mueller . . J Chem Phys , 2016 . 145 114903 DOI:10.1063/1.4962743http://doi.org/10.1063/1.4962743.
S Liang , M V O'Reilly , U H Choi , H S Shiau , J Bartels , Q Chen , J Runt , K I Winey , R H Colby . . Macromolecules , 2014 . 47 4428 - 4437 . DOI:10.1021/ma5001546http://doi.org/10.1021/ma5001546.
G J Tudryn , M V O'Reilly , S C Dou , D R King , K I Winey , J Runt , R H Colby . . Macromolecules , 2012 . 45 3962 - 3973 . DOI:10.1021/ma202273jhttp://doi.org/10.1021/ma202273j.
I A Nyrkova , A R Khokhlov , M Doi . . Macromolecules , 1993 . 26 3601 - 3610 . DOI:10.1021/ma00066a019http://doi.org/10.1021/ma00066a019.
A N Semenov , I A Nyrkova , A R Khokhlov . . Macromolecules , 1995 . 28 7491 - 7500 . DOI:10.1021/ma00126a029http://doi.org/10.1021/ma00126a029.
K M Beers , N P Balsara . . ACS Macro Lett , 2012 . 1 1155 - 1160 . DOI:10.1021/mz300389fhttp://doi.org/10.1021/mz300389f.
B P Kirkmeyer , R A Weiss , K I Winey . . J Polym Sci, Part B:Polym Phys , 2001 . 39 477 - 483 . DOI:10.1002/(ISSN)1099-0488http://doi.org/10.1002/(ISSN)1099-0488.
C W Huang , Q Chen , R A Weiss . . Macromolecules , 2017 . 50 424 - 431 . DOI:10.1021/acs.macromol.6b02423http://doi.org/10.1021/acs.macromol.6b02423.
R A Weiss , H Y Zhao . . J Rheol , 2009 . 53 191 - 213 . DOI:10.1122/1.3003570http://doi.org/10.1122/1.3003570.
F J Stadler , T Still , G Fytas , C Bailly . . Macromolecules , 2010 . 43 7771 - 7778 . DOI:10.1021/ma101028bhttp://doi.org/10.1021/ma101028b.
G H Ling , Y Y Wang , R A Weiss . . Macromolecules , 2012 . 45 481 - 490 . DOI:10.1021/ma201854whttp://doi.org/10.1021/ma201854w.
A Shabbir , Q Huang , Q Chen , R H Colby , N J Alvarez , O Hassager . . Soft Matter , 2016 . 12 7606 - 7612 . DOI:10.1039/C6SM01441Khttp://doi.org/10.1039/C6SM01441K.
0
浏览量
38
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构