浏览全部资源
扫码关注微信
浙江大学化学工程与生物工程学院 化学工程联合国家重点实验室 杭州 310027
[ "谢涛, 男, 1971年12月生.浙江大学化学工程与生物工程学院教授.1993年毕业于浙江大学化学系高分子专业, 1996年及1997年分别获得浙江大学高分子及比利时鲁汶大学化学系硕士学位, 2001年获美国马萨诸塞大学安赫施特分校高分子科学与工程博士学位.2001~2012年任职于通用汽车公司全球研发部, 2012~2013年任职于美国HRL实验室.曾获美国Conte国家高分子研究中心杰出研究奖, 2011年美国制造工程师协会年度创新奖及2013年全球百大研发成果奖(R&D100奖).2013年入选中组部\"千人计划\"长期创新项目.2016年获国家杰出青年科学基金资助.目前担任美国化学会ACS Applied Materials & Interfaces副主编.近年来对刺激响应交联聚合物(特别是形状记忆高分子)领域的瓶颈问题进行了系统性研究, 取得了有国际影响力的成果, 包括:揭示了高分子形状记忆基于普适性黏弹性的物理本质, 发现并阐明了可调多形状记忆效应与热适性形状记忆效应, 开拓了一系列形状记忆高分子高附加值的新应用等" ]
纸质出版日期:2017-11-20,
收稿日期:2017-6-19,
修回日期:2017-7-20,
扫 描 看 全 文
郑宁, 谢涛. 热适性形状记忆聚合物[J]. 高分子学报, 2017,(11):1715-1724.
Zheng Ning, Xie Tao. Thermadapt Shape Memory Polymer[J]. Acta Polymerica Sinica, 2017,(11):1715-1724.
郑宁, 谢涛. 热适性形状记忆聚合物[J]. 高分子学报, 2017,(11):1715-1724. DOI: 10.11777/j.issn1000-3304.2017.17161.
Zheng Ning, Xie Tao. Thermadapt Shape Memory Polymer[J]. Acta Polymerica Sinica, 2017,(11):1715-1724. DOI: 10.11777/j.issn1000-3304.2017.17161.
动态共价交联聚合物的研究具有悠久的历史,其早期的工作着眼于如何解决应力松弛带来的聚合物材料力学性能降低的问题.20世纪90年代以来,利用动态共价键来主动设计聚合物网络的特殊可适性逐渐成为研究主流,其中包括自修复和重加工性.然而,受到动态共价键的种类、通用性及所实现功能的特异性等限制,对于动态共价交联聚合物网络的研究尚停留在基础阶段.本文以本课题组近期在动态共价交联形状记忆聚合物的研究为基础,结合其他相关工作,展示了通用共价键(酯键及氨酯键)的动态可逆性,并利用其设计了具有特殊性能和潜在商业化价值的形状记忆聚合物.在此基础上,我们提出分子结构设计及宏观性能均不同于传统热塑性和热固性形状记忆聚合物的第3类形状记忆聚合物,即热适性形状记忆聚合物.
As a class of smart materials
shape memory polymers have gained considerable interest in recent years due to their unique shape changing behaviors. Recent advances in shape memory polymer field have led to the emergence of various exciting applications
including deployable biomedical devices and aerospace structures. Beyond the traditional shape memory effect (one way dual-shape memory effect)
the recently emerged properties (triple-
multi-and two way shape memory effects) have drastically expanded their potential application. However
these properties focus mainly on the temporary shape manipulation
and the attention on the permanent shapes has been largely ignored. Unlike the classical thermoplastic and thermoset shape memory polymers
the recently emerged shape memory polymers with dynamic covalent bonds in the network have opened up new opportunities in manipulating its permanent shape. Dynamic covalent polymer networks have long been recognized. Early work focused mainly on minimizing stress relaxation in commercial network polymers to improve their mechanical properties. Since 1990's
the attention has been shifted towards purposeful design of dynamic covalent polymer networks with unique adaptive properties
including self-healing and thermoset reprocessing properties. Several new terms (dynamer
CAN
and vitrimer) have been proposed to emphasize the uniqueness of these polymer networks with dynamic covalent bonds. However
these past efforts have been mostly limited to basic research due to the inherently niche chemistry involved. In this article
we briefly overview recent progresses in dynamic covalent polymer networks and shape memory polymers
which sets the stage for further discussion on recently emerged dynamic covalent shape memory polymer networks. On account of the general applicability of the dynamic covalent bonds (
e.g.
esters and urethanes) involved as well as unique macroscopic properties (solid state plasticity)
we propose that dynamic covalent shape memory polymers can form a third class of shape memory polymers
thermadapt shape memory polymers
alongside the widely known thermoplastic and thermoset shape memory polymers.
形状记忆聚合物动态可逆交联应力松弛
Dynamic covalent bondShape memory polymerStress relaxation
Q Zhao , H J Qi , T Xie . Prog Polym Sci , 2015 . 49-20 79 - 120 . http://www.sciencedirect.com/science/article/pii/S0079670015000477.
M I Lawton , K R Tillman , H S Mohammed , W Kuang , D A Shipp , P T Mather . ACS Macro Lett , 2016 . 5 203 - 207 . DOI:10.1021/acsmacrolett.5b00854http://doi.org/10.1021/acsmacrolett.5b00854.
P T Mather , X Luo , I A Rousseau . Annu Rev Mater Res , 2009 . 39 445 - 471 . DOI:10.1146/annurev-matsci-082908-145419http://doi.org/10.1146/annurev-matsci-082908-145419.
J L Hu , Y Zhu , H H Huang , J Lu . Prog Polym Sci , 2012 . 37 1720 - 1763 . DOI:10.1016/j.progpolymsci.2012.06.001http://doi.org/10.1016/j.progpolymsci.2012.06.001.
A Lendlein , M Behl , B Hiebl , C Wischke . Expert Rev Med Devices , 2010 . 7 357 - 379 . DOI:10.1586/erd.10.8http://doi.org/10.1586/erd.10.8.
J S Leng , X Lan , Y J Liu , S Y Du . Prog Mater Sci , 2011 . 56 1077 - 1135 . DOI:10.1016/j.pmatsci.2011.03.001http://doi.org/10.1016/j.pmatsci.2011.03.001.
L Sun , W M Huang , Z Ding , Y Zhao , C C Wang , H Purnawali , C Tang . Mater Des , 2012 . 33 577 - 640 . DOI:10.1016/j.matdes.2011.04.065http://doi.org/10.1016/j.matdes.2011.04.065.
W K Zou , J T Dong , Y W Luo , Q Zhao , T Xie . Adv Mater , 2017 . 29 1606100 DOI:10.1002/adma.v29.14http://doi.org/10.1002/adma.v29.14.
J M Lehn . Prog Polym Sci , 2005 . 30 814 - 831 . DOI:10.1016/j.progpolymsci.2005.06.002http://doi.org/10.1016/j.progpolymsci.2005.06.002.
R J Wojtecki , M A Meador , S J Rowan . Nat Mater , 2011 . 10 14 - 27 . DOI:10.1038/nmat2891http://doi.org/10.1038/nmat2891.
C J Kloxin , T F Scott , B J Adzima , C N Bowman . Macromolecules , 2010 . 43 2643 - 2653 . DOI:10.1021/ma902596shttp://doi.org/10.1021/ma902596s.
G Deng , Q Ma , H Yu , Y Zhang , Z Yan , F Liu , C Liu , H Jiang , Y Chen . ACS Macro Lett , 2015 . 4 467 - 471 . DOI:10.1021/acsmacrolett.5b00096http://doi.org/10.1021/acsmacrolett.5b00096.
C Yuan , M Z Rong , M Q Zhang , Z P Zhang , Y C Yuan . Chem Mater , 2011 . 23 5076 - 5081 . DOI:10.1021/cm202635whttp://doi.org/10.1021/cm202635w.
M D Stern , A V Tobolsky . J Chem Phys , 1946 . 14 93 - 100 . DOI:10.1063/1.1724110http://doi.org/10.1063/1.1724110.
A V Tobolsky . J Appl Phys , 1956 . 27 673 - 685 . DOI:10.1063/1.1722465http://doi.org/10.1063/1.1722465.
C Liu , H Qin , P T Mather . J Mater Chem , 2007 . 17 1543 - 1558 . DOI:10.1039/b615954khttp://doi.org/10.1039/b615954k.
A Lendlein , R Langer . Science , 2002 . 296 1673 - 1676 . DOI:10.1126/science.1066102http://doi.org/10.1126/science.1066102.
H X Xu , C J Yu , S D Wang , V Malyarchuk , T Xie , J A Rogers . Adv Funct Mater , 2013 . 23 3299 - 3306 . DOI:10.1002/adfm.v23.26http://doi.org/10.1002/adfm.v23.26.
Z B Yu , Q W Zhang , L Li , Q Chen , X F Niu , J Liu , Q B Pei . Adv Mater , 2011 . 23 664 - 668 . DOI:10.1002/adma.201003398http://doi.org/10.1002/adma.201003398.
Y Huang , N Zheng , Z Q Cheng , Y Chen , B W Lu , T Xie , X Feng . ACS Appl Mater Interfaces , 2016 . 8 35628 - 35633 . DOI:10.1021/acsami.6b11696http://doi.org/10.1021/acsami.6b11696.
Ning Zheng , Yin Huang , Qian Zhao , Tao Xie , Xue Feng . Sci Sin-Phys Mech Astron , 2016 . 46 044602 http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm.
郑 宁 , 黄 银 , 赵 骞 , 谢 涛 , 冯 雪 . 中国科学:物理学力学天文学 , 2016 . 46 044602 http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm.
N Zheng , G Q Fang , Z L Cao , Q Zhao , T Xie . Polym Chem , 2015 . 6 3046 - 3053 . DOI:10.1039/C5PY00172Bhttp://doi.org/10.1039/C5PY00172B.
T Xie , I A Rousseau . Polymer , 2009 . 50 1852 - 1856 . DOI:10.1016/j.polymer.2009.02.035http://doi.org/10.1016/j.polymer.2009.02.035.
T Xie , X Xiao , Y T Cheng . Macromol Rapid Commun , 2009 . 30 1823 - 1827 . DOI:10.1002/marc.v30:21http://doi.org/10.1002/marc.v30:21.
T Xie . Nature , 2010 . 464 267 - 270 . DOI:10.1038/nature08863http://doi.org/10.1038/nature08863.
Miaoming Huang , Xia Dong , Weili Liu , Xia Gao , Dujin Wang . Acta Polymerica Sinica , 2017 . ( 4 ): 563 - 579 . http://www.gfzxb.org/CN/abstract/abstract14675.shtml.
黄 淼铭 , 董 侠 , 刘 伟丽 , 高 峡 , 王 笃金 . 高分子学报 , 2017 . ( 4 ): 563 - 579 . http://www.gfzxb.org/CN/abstract/abstract14675.shtml.
M Behl , K Kratz , J Zotzmann , U Nöchel , A Lendlein . Adv Mater , 2013 . 25 4466 - 4469 . DOI:10.1002/adma.v25.32http://doi.org/10.1002/adma.v25.32.
D Montarnal , M Capelot , F Tournilhac , L Leibler . Science , 2011 . 334 965 - 968 . DOI:10.1126/science.1212648http://doi.org/10.1126/science.1212648.
R C Osthoff , A M Bueche , W T Grubb . J Am Chem Soc , 1954 . 76 4659 - 4663 . DOI:10.1021/ja01647a052http://doi.org/10.1021/ja01647a052.
P Zheng , T J McCarthy . J Am Chem Soc , 2012 . 134 2024 - 2027 . DOI:10.1021/ja2113257http://doi.org/10.1021/ja2113257.
Y X Lu , F Tournilhac , L Leibler , Z Guan . J Am Chem Soc , 2012 . 134 8424 - 8427 . DOI:10.1021/ja303356zhttp://doi.org/10.1021/ja303356z.
H Ying , Y Zhang , J Cheng . Nat Commun , 2014 . 5 3218 http://www.nature.com/ncomms/2014/140204/ncomms4218/abs/ncomms4218.html.
B T Michal , C A Jaye , E J Spencer , S J Rowan . ACS Macro Lett , 2013 . 2 694 - 699 . DOI:10.1021/mz400318mhttp://doi.org/10.1021/mz400318m.
S Ji , W Cao , Y Yu , H Xu . Adv Mater , 2015 . 27 7740 - 7745 . DOI:10.1002/adma.201503661http://doi.org/10.1002/adma.201503661.
Y Amamoto , H Otsuka , A Takahara , K Matyjaszewski . Adv Mater , 2012 . 24 3975 - 3980 . DOI:10.1002/adma.v24.29http://doi.org/10.1002/adma.v24.29.
M Capelot , M M Unterlass , F Tournilhac , L Leibler . ACS Macro Lett , 2012 . 1 789 - 792 . DOI:10.1021/mz300239fhttp://doi.org/10.1021/mz300239f.
Xi Zhang . Acta Polymerica Sinica , 2016 . ( 6 ): 685 - 687 . http://www.gfzxb.org/CN/abstract/abstract14590.shtml.
张 希 . 高分子学报 , 2016 . ( 6 ): 685 - 687 . http://www.gfzxb.org/CN/abstract/abstract14590.shtml.
D J Fortman , J P Brutman , C J Cramer , M A Hillmyer , W R Dichtel . J Am Chem Soc , 2015 . 137 14019 - 14022 . DOI:10.1021/jacs.5b08084http://doi.org/10.1021/jacs.5b08084.
W Denissen , G Rivero , R Nicolaÿ , L J Leibler , M Winne , F E Du Prez . Adv Funct Mater , 2015 . 25 2451 - 2457 . DOI:10.1002/adfm.201404553http://doi.org/10.1002/adfm.201404553.
P Taynton , K Yu , R K Shoemaker , Y H Jin , H J Qi , W Zhang . Adv Mater , 2014 . 26 3938 - 3942 . DOI:10.1002/adma.201400317http://doi.org/10.1002/adma.201400317.
Z Pei , Y Yang , Q Chen , E M Terentjev , Y Wei , Y Ji . Nat Mater , 2014 . 13 36 - 41 . http://europepmc.org/abstract/med/24292422.
Haiping Wang , Minzhi Rong , Mingqiu Zhang . Process Chem , 2010 . 22 2397 - 2407 . http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm.
汪 海平 , 容 敏智 , 章 明秋 . 化学进展 , 2010 . 22 2397 - 2407 . http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm.
T F Scott , A D Schneider , W D Cook , C N Bowman . Science , 2005 . 308 1615 - 1617 . DOI:10.1126/science.1110505http://doi.org/10.1126/science.1110505.
C J Kloxin , T F Scott , H Park , C N Bowman . Adv Mater , 2011 . 23 1977 - 1981 . DOI:10.1002/adma.201100323http://doi.org/10.1002/adma.201100323.
B T Michal , C A Jaye , E J Spencer , S J Rowan . ACS Macro Lett , 2013 . 2 694 - 699 . DOI:10.1021/mz400318mhttp://doi.org/10.1021/mz400318m.
Q Zhao , W Zou , Y Luo , T Xie . Sci Adv , 2016 . 2 e1501297 DOI:10.1126/sciadv.1501297http://doi.org/10.1126/sciadv.1501297.
N Zheng , Z Z Fang , W K Zou , Q Zhao , T Xie . Angew Chem Int Ed , 2016 . 55 11421 - 11425 . DOI:10.1002/anie.201602847http://doi.org/10.1002/anie.201602847.
N Zheng , J J Hou , Y Xu , Z Z Fang , W K Zou , Q Zhao , T Xie . ACS Macro Lett , 2017 . 6 326 - 330 . DOI:10.1021/acsmacrolett.7b00037http://doi.org/10.1021/acsmacrolett.7b00037.
P Y Yan , W Zhao , X W Fu , Z M Liu , W B Kong , C L Zhou , J X Lei . RSC Adv , 2017 . 7 26858 - 26866 . DOI:10.1039/C7RA01711Ahttp://doi.org/10.1039/C7RA01711A.
Z Z Fang , N Zheng , Q Zhao , T Xie . ACS Appl Mater Inter , DOI:10.1021/acsami.7b05713http://doi.org/10.1021/acsami.7b05713 .
T Defize , R Riva , J M Thomassin , M Alexandre , N V Herck , F D Prez , C Jérôme . Macromol Rapid Commun , 2017 . 38 1600517 DOI:10.1002/marc.v38.1http://doi.org/10.1002/marc.v38.1.
G G Zhang , Q Zhao , L P Yang , W K Zou , X Y Xi , T Xie . ACS Macro Lett , 2016 . 5 805 - 808 . DOI:10.1021/acsmacrolett.6b00357http://doi.org/10.1021/acsmacrolett.6b00357.
X Kuang , G Liu , X Dong , D J Wang . Mater Chem Front , 2017 . 1 111 - 118 . DOI:10.1039/C6QM00094Khttp://doi.org/10.1039/C6QM00094K.
H Yang , K Yu , X Mu , X Shi , Y Wei , Y Guo , H J Qi . Soft Matter , 2015 . 11 6305 - 6317 . DOI:10.1039/C5SM00942Ahttp://doi.org/10.1039/C5SM00942A.
F Meng , R H Pritchard , E M Terentjev . Macromolecules , 2016 . 49 2843 - 2852 . DOI:10.1021/acs.macromol.5b02667http://doi.org/10.1021/acs.macromol.5b02667.
0
浏览量
91
下载量
19
CSCD
关联资源
相关文章
相关作者
相关机构