浏览全部资源
扫码关注微信
E-mail: miqiukong@scu.edu.cn Mi-qiu Kong, E-mail: miqiukong@scu.edu.cn
E-mail: guangxianli@scu.edu.cn Guang-xian Li, E-mail: guangxianli@scu.edu.cn
纸质出版日期:2018-6,
收稿日期:2017-7-27,
修回日期:2017-8-29,
扫 描 看 全 文
赵梦雪, 孔米秋, 刘成俊, 黄亚江, 李光宪. 多巴胺改性氧化石墨烯对TDE-85环氧树脂的增韧研究[J]. 高分子学报, 2018,0(6):721-732.
Meng-xue Zhao, Mi-qiu Kong, Cheng-jun Liu, Ya-jiang Huang, Guang-xian Li. Toughening of TDE-85 Epoxy Resin by Dopamine-modified Graphene Oxide[J]. Acta Polymerica Sinica, 2018,0(6):721-732.
赵梦雪, 孔米秋, 刘成俊, 黄亚江, 李光宪. 多巴胺改性氧化石墨烯对TDE-85环氧树脂的增韧研究[J]. 高分子学报, 2018,0(6):721-732. DOI: 10.11777/j.issn1000-3304.2017.17203.
Meng-xue Zhao, Mi-qiu Kong, Cheng-jun Liu, Ya-jiang Huang, Guang-xian Li. Toughening of TDE-85 Epoxy Resin by Dopamine-modified Graphene Oxide[J]. Acta Polymerica Sinica, 2018,0(6):721-732. DOI: 10.11777/j.issn1000-3304.2017.17203.
采用多巴胺改性氧化石墨烯(DGO)对TDE-85进行增韧研究. 研究发现,与纯TDE-85和TDE-85/GO复合材料相比,DGO的加入在保持TDE-85良好耐热性的同时使其力学性能得到了提高. 尤其是当DGO的含量为0.05 wt%时,TDE-85/DGO复合材料的韧性(临界应力强度因子,
K
Ic
)提高了284.2%. 这可归结为DGO与TDE-85基体树脂的界面结合性较好,当裂纹扩展时在DGO处出现了明显的裂纹阻碍和偏转现象.
Graphene oxide (GO) is used to improve mechanical
thermal and functional properties of epoxy
in which the challenges are to achieve strong interfacial bonding between GO and epoxy resins with a uniform dispersion of GO within epoxy resins. GO can be partially reduced and exfoliated through modification by dopamine (DA)
which can improve the dispersion of DGO in epoxy resins and achieve better interfacial bonding between DGO and the epoxy resins. The purpose of this work is to investigate the effects of GO modification by DA (DGO) on the mechanical and thermal properties of a multifunctional epoxy —diglycidyl-4
5-epoxy-cyclohexane-1
2-dicarboxylate (TDE-85). First
GO and DA were mixed with deionized water and then reacted to prepare DGO. The obtained DGO without desiccation and the pristine GO are respectively dispersed in acetone with TDE-85
and TDE-85/DGO and TDE-85/GO mixture are therefore prepared by sonication and used as master batches. The master batches are then diluted by adding a certain amount of TDE-85 and cured at elevated temperature to obtain the composites of TDE-85/DGO and TDE-85/GO with varied contents of DGO and GO. Finally
the results of the modification are demonstrated
and the properties of the composites are characterized. It is found that
GO is partially reduced and exfoliated by DA modification
and the mechanical properties of TDE-85 is enhanced upon adding DGO without losing its heat resistance. Especially when the content of DGO is 0.05 wt%
the critical stress intensity factor (
K
Ic
)
tensile strength
elongation at break
and glass-transition temperature (
T
g
) of TDE-85/DGO composites are improved by 284.2%
17.59%
13.84% and 4.0%
respectively. The strong interfacial bonding between TDE-85 and DGO owing to the functional groups of PDA on the surface of DGO
the obvious crack deflection and crack pinning exhibited at the location of the DGO observed in SEM may be responsible for the improved mechanical properties. Furthermore
the tensile strength
K
Ic
and
T
g
of TDE-85/DGO system are compared with those of similar toughened materials by other methods
and the result suggests that the present process is an effective toughened method. Thus
this work provides a toughened epoxy for preparing fiber reinforced composites with high-strength and high-modulus.
多官能度环氧树脂石墨烯多巴胺增韧
Multifunctional epoxy resinGraphite oxideDopamineToughening
Chen Ping(陈平), Liu Shengping(刘胜平), Wang Dezhong(王德中). Epoxy Resin & Its Applications(环氧树脂及其应用). Beijing(北京): Chemical Industry Press(化学工业出版社), 2011. 1–5
Hua Youqing(华幼卿), Zhao Dongmei(赵冬梅). Acta Materiae Compositae Sinica(复合材料学报), 1993, 10(3): 37-42
Li Zhihua(李芝华), Huang Yaopeng(黄耀鹏), Ren Dongyan(任冬燕), Zheng Ziqiao(郑子樵). Journal of Central South University of Technology(中南大学学报), 2008, 15(3): 305-308
Zeng Liang(曾亮), Li Chaohua(黎超华), Li Zhongliang(李忠良), Li Hongyan(李鸿岩), Jiang Qibin(姜其斌). Insulating Materials(绝缘材料), 2016, 49(3): 24-28
Jiang Deyi(蒋德意), Zhou Quan(周权), Ni Lizhong(倪礼忠), Shen Kang(沈康), Xu Qilei(徐其磊). Journal of Solid Rocket Technology(固体火箭技术), 2016, 39(3): 407-411
Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R, Ruoff R S . Adv Mater , 2010 . 22 ( 35 ): 3906 - 3924 . DOI:10.1002/adma.201001068http://doi.org/10.1002/adma.201001068 .
Wei J C, Vo T, Inam F . RSC Adv , 2015 . 5 ( 90 ): 73510 - 73524 . DOI:10.1039/C5RA13897Chttp://doi.org/10.1039/C5RA13897C .
Kaminska I, Das M R, Coffinier Y, Niedziolka-Jonsson J, Sobczak J, Woisel P, Lyskawa J, Opallo M, Boukherroub R, Szunerits S . ACS Appl Mater Inter , 2012 . 4 ( 2 ): 1016 - 1020 . DOI:10.1021/am201664nhttp://doi.org/10.1021/am201664n .
Lee W, Lee J U, Jung B M, Byun J H, Yi J W, Lee S B, Kim B S . Carbon , 2013 . 65 296 - 304 . DOI:10.1016/j.carbon.2013.08.029http://doi.org/10.1016/j.carbon.2013.08.029 .
Liu Y L, Ai K L, Lu L H . Chem Rev , 2014 . 114 ( 9 ): 5057 - 5115 . DOI:10.1021/cr400407ahttp://doi.org/10.1021/cr400407a .
Liebscher J, Mrowczynski R, Scheidt H A, Filip C, Hadade N D, Turcu R, Bende A, Beck S . Langmuir , 2013 . 29 ( 33 ): 10539 - 10548 . DOI:10.1021/la4020288http://doi.org/10.1021/la4020288 .
Della Vecchia N F, Avolio R, Alfe M, Errico M E, Napolitano A, D’ischia M . Adv Funct Mater , 2013 . 23 ( 10 ): 1331 - 1340 . DOI:10.1002/adfm.v23.10http://doi.org/10.1002/adfm.v23.10 .
Yang L P, Kong J H, Yee W A, Liu W S, Phua S L, Toh C L, Huang S, Lu X H . Nanoscale , 2012 . 4 ( 16 ): 4968 - 4971 . DOI:10.1039/c2nr31258ahttp://doi.org/10.1039/c2nr31258a .
Hu X, Qi R, Zhu J, Lu J, Luo Y, Jin J, Jiang P . J Appl Polym Sci , 2014 . 131 ( 2 ): 39754 - 39762.
Li W B, Shang T H, Yang W G, Yang H C, Lin S, Jia X L, Cai Q, Yang X P . ACS Appl Mater Inter , 2016 . 8 ( 20 ): 13037 - 13050 . DOI:10.1021/acsami.6b02496http://doi.org/10.1021/acsami.6b02496 .
Wu Y P, Chen M B, Chen M, Ran Z P, Zhu C H, Liao H . Polym Test , 2017 . 58 262 - 269 . DOI:10.1016/j.polymertesting.2016.12.021http://doi.org/10.1016/j.polymertesting.2016.12.021 .
Dreyer D R, Miller D J, Freeman B D, Paul D R, Bielawski C W . Langmuir , 2012 . 28 ( 15 ): 6428 - 6435 . DOI:10.1021/la204831bhttp://doi.org/10.1021/la204831b .
Liang Y Y, Yang S, Jiang X, Zhong G J, Xu J Z, Li Z M . J Phys Chem B , 2015 . 119 ( 13 ): 4777 - 4787 . DOI:10.1021/jp511742bhttp://doi.org/10.1021/jp511742b .
Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S . Carbon , 2007 . 45 ( 7 ): 1558 - 1565 . DOI:10.1016/j.carbon.2007.02.034http://doi.org/10.1016/j.carbon.2007.02.034 .
Hu Ling(胡令), Jiang Pingping(蒋平平), Zhang Pingbo(张萍波), Bian Gang(卞刚), Sheng Songsong(盛松松), Huang Min(黄敏), Xia Jialiang(夏嘉良). Fine Chemicals(精细化工), 2017, 34(1): 20-27
Zhang D D, Wang R M, Farhan S, Jiang H, Wang N N, Yuan L . RSC Adv , 2016 . 6 ( 93 ): 90994 - 91001 . DOI:10.1039/C6RA15126Dhttp://doi.org/10.1039/C6RA15126D .
Liu J D, Sue HJ, Thompson Z J, Bates F S, Dettloff M, Jacob G, Verghese N, Pham H . Polymer , 2009 . 50 ( 19 ): 4683 - 4689 . DOI:10.1016/j.polymer.2009.05.006http://doi.org/10.1016/j.polymer.2009.05.006 .
Thitsartarn W, Fan X S, Sun Y, Yeo J C C, Yuan D, He C B . Compos Sci Technol , 2015 . 118 63 - 71 . DOI:10.1016/j.compscitech.2015.06.011http://doi.org/10.1016/j.compscitech.2015.06.011 .
Rafiee M A, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N . ACS Nano , 2009 . 3 ( 12 ): 3884 - 3890 . DOI:10.1021/nn9010472http://doi.org/10.1021/nn9010472 .
Jiang T W, Kuila T, Kim N H, Ku BC, Lee J H . Compos Sci Technol , 2013 . 79 115 - 125 . DOI:10.1016/j.compscitech.2013.02.018http://doi.org/10.1016/j.compscitech.2013.02.018 .
Park Y T, Qian Y Q, Chan C, Suh T, Nejhad M G, Macosko C W, Stein A . Adv Funct Mater , 2015 . 25 ( 4 ): 575 - 585 . DOI:10.1002/adfm.v25.4http://doi.org/10.1002/adfm.v25.4 .
Wang X, Jin J, Song M . Carbon , 2013 . 65 324 - 333 . DOI:10.1016/j.carbon.2013.08.032http://doi.org/10.1016/j.carbon.2013.08.032 .
Ragosta G, Abbate M, Musto P, Scarinzi G, Mascia L . Polymer , 2005 . 46 ( 23 ): 10506 - 10516 . DOI:10.1016/j.polymer.2005.08.028http://doi.org/10.1016/j.polymer.2005.08.028 .
0
浏览量
28
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构