浏览全部资源
扫码关注微信
超分子结构与材料国家重点实验室 吉林大学化学学院 理论化学研究所 长春 130012
E-mail: songyu16@jlu.edu.cn Yu Song, E-mail: songyu16@jlu.edu.cn
纸质出版日期:2018-6,
收稿日期:2017-8-30,
修回日期:2017-12-1,
扫 描 看 全 文
吕秀娟, 宋宇, 张文科. 聚氧乙烯单晶介观力学性质研究[J]. 高分子学报, 2018,0(6):748-754.
Xiu-juan Lv, Yu Song, Wen-ke Zhang. Mesoscopic Mechanical Properties of PEO Single Crystal[J]. Acta Polymerica Sinica, 2018,0(6):748-754.
吕秀娟, 宋宇, 张文科. 聚氧乙烯单晶介观力学性质研究[J]. 高分子学报, 2018,0(6):748-754. DOI: 10.11777/j.issn1000-3304.2017.17246.
Xiu-juan Lv, Yu Song, Wen-ke Zhang. Mesoscopic Mechanical Properties of PEO Single Crystal[J]. Acta Polymerica Sinica, 2018,0(6):748-754. DOI: 10.11777/j.issn1000-3304.2017.17246.
以固定于平整硅基底上的聚氧乙烯单晶为模型体系,利用原子力显微镜的成像功能定位单晶后,用探针压穿聚氧乙烯单晶层,测量单晶层的介观力学性质. 结果显示,原子力显微镜探针压穿单晶层所需要的力值为50 ~ 200 nN,随着探针曲率半径、下压速率和聚氧乙烯与溶剂界面能的增加,压穿单晶层所需要的力值也随之增加. 结合分子模型证明在压穿过程中聚氧乙烯分子被原子力显微镜探针挤压到单晶外部. 另外,发现在相同的下压速率和拉伸速率下,将相同数目的聚氧乙烯分子链挤压出晶体的能量与拉伸出晶体所需要的能量接近,继而从能量角度建立了聚氧乙烯晶体微观力学性质与介观力学性质的联系.
Semicrystalline polymers are composed of crystalline and amorphous regions. The crystalline region plays a key role in determining their mechanical properties by providing stiff crosslinking domains. Understanding how the microscopic mechanical properties of the polymer single crystals are related to their macroscopic mechanical properties is significant to reveal the fundamental elastic and plastic deformations for advanced polymer engineering materials. The study of mesoscopic mechanical properties of polymer single crystal is key to this issue. Here
by using atomic force microscopy (AFM) imaging and force spectroscopy together
the mesoscopic mechanical properties of PEO single-crystal were investigated by squeezing PEO molecules out of the crystal phase using AFM tip. After elastically deformed
PEO single-crystal layer was penetrated by AFM tip at several tens of nN.The breakthrough force increased with the increase of the tip radius and PEO-solvent interfacial energy. The breakthrough force shows a linear correlation with the logarithm of the approaching velocity
which is fitted very well by molecular model. The energy for squeezing PEO chains out of their single crystal corresponds to the area enclosed by the approaching and retracting curves. Moreover
the energy for pulling a single PEO chain from its single crystal is calculated from the typical pulling curves. The energy for squeezing a same number of PEO chains out of their single crystal is about 23.4% lower than pulling. This energy comparison is helpful for bridging the microscopic and the mesoscopic mechanical properties. These results indicate that the combined techniques represent a novel experimental tool to investigate mesoscopic mechanical properties of the polymer materials in their condensed states.
聚氧乙烯单晶原子力显微镜介观力学性质
PEO single crystalAtomic force microscopyMesoscopic mechanical properties
Wang H P, Keum J K, Hiltner A, Baer E, Freeman B, Rozanski A, Galeski A . Science , 2009 . 323 757 - 760 . DOI:10.1126/science.1164601http://doi.org/10.1126/science.1164601 .
Goffri S, Müller C, Stingelin-Stutzmann N, Breiby D W, Radano C P, Andreasen J W, Thompson R, Janssen R A J, Nielsen M M, Smith P, Sirringhaus H . Nat Mater , 2006 . 5 950 - 956 . DOI:10.1038/nmat1779http://doi.org/10.1038/nmat1779 .
Hiss R, Hobeika S, Lynn C, Strobl G . Macromolecules , 1999 . 32 4390 - 4403 . DOI:10.1021/ma981776bhttp://doi.org/10.1021/ma981776b .
Men Y F, Rieger J, Strobl G . Phys Rev Lett , 2003 . 91 095502 DOI:10.1103/PhysRevLett.91.095502http://doi.org/10.1103/PhysRevLett.91.095502 .
Schrauwen B A G, Janssen R P M, Govaet L E, Meijer H E H . Macromolecules , 2004 . 37 6069 - 6078 . DOI:10.1021/ma035279thttp://doi.org/10.1021/ma035279t .
Fischer S, Jiang Z, Men Y F . J Phys Chem B , 2011 . 115 13803 - 13808 . DOI:10.1021/jp204998phttp://doi.org/10.1021/jp204998p .
Hugel T, Holland N B, Cattani A, Moroder L, Seitz M, Gaub H E . Science , 2002 . 296 1103 - 1106 . DOI:10.1126/science.1069856http://doi.org/10.1126/science.1069856 .
Rief M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E . Science , 1997 . 276 1109 - 1112 . DOI:10.1126/science.276.5315.1109http://doi.org/10.1126/science.276.5315.1109 .
Zheng P, Li H B . J Am Chem Soc , 2011 . 133 6791 - 6798 . DOI:10.1021/ja200715hhttp://doi.org/10.1021/ja200715h .
Zhang W K, Machon C, Orta A, Phillips N, Roberts C J, Allen S, Soultanas P . J Mol Biol , 2008 . 377 706 - 714 . DOI:10.1016/j.jmb.2008.01.067http://doi.org/10.1016/j.jmb.2008.01.067 .
Liu N N, Peng B, Lin Y, Su Z H, Niu Z W, Wang Q, Zhang W K, Li H B, Shen J C . J Am Chem Soc , 2011 . 132 11036 - 11038.
Zhang W K, Zhang X . Prog Polym Sci , 2003 . 28 1271 - 1295 . DOI:10.1016/S0079-6700(03)00046-7http://doi.org/10.1016/S0079-6700(03)00046-7 .
Popa I, Zhang B Z, Maroni P, Schluter A D, Borkovec M . Angew Chem Int Ed , 2010 . 49 4250 - 4253 . DOI:10.1002/anie.v49:25http://doi.org/10.1002/anie.v49:25 .
Wang C, Shi W Q, Zhang W K . Nano Lett , 2002 . 2 1169 - 1172 . DOI:10.1021/nl0256917http://doi.org/10.1021/nl0256917 .
Erdmann M, David R, Fornof A, Gaub H E . Nat Nanotechnol , 2010 . 5 154 - 159 . DOI:10.1038/nnano.2009.377http://doi.org/10.1038/nnano.2009.377 .
Geisler M, Netz R R, Hugel T . Angew Chem Int Ed , 2010 . 49 4730 - 4733 . DOI:10.1002/anie.200907098http://doi.org/10.1002/anie.200907098 .
Geisler M, Xiao S B, Puchner E M, Gräter F, Hugel T . J Am Chem Soc , 2010 . 132 17277 - 17281 . DOI:10.1021/ja107212zhttp://doi.org/10.1021/ja107212z .
Zhang W K, Cui S X, Fu Y, Zhang X . J Phys Chem B , 2002 . 106 12705 - 12708 . DOI:10.1021/jp0201377http://doi.org/10.1021/jp0201377 .
Gunari N, Balazs A C, Walker G C . J Am Chem Soc , 2007 .129 10046 - 10047 . DOI:10.1021/ja068652whttp://doi.org/10.1021/ja068652w .
Li I T S, Walker G C . J Am Chem Soc , 2010 . 132 6530 - 6540 . DOI:10.1021/ja101155hhttp://doi.org/10.1021/ja101155h .
Rief M, Oesterhelt F, Heymann B, Gaub H E . Science , 1997 . 275 1295 - 1297 . DOI:10.1126/science.275.5304.1295http://doi.org/10.1126/science.275.5304.1295 .
Marszalek P E, Oberhauser A F, Pang Y P, Fernandez J M . Nature , 1998 . 396 661 - 664 . DOI:10.1038/25322http://doi.org/10.1038/25322 .
Zhang Q M, Marszalek P E . J Am Chem Soc , 2006 . 128 5596 - 5597 . DOI:10.1021/ja058828ehttp://doi.org/10.1021/ja058828e .
Trusov P V, Shveykin A I, Nechaeva E S, Volegov P S . Phys Mesomech , 2012 . 15 115 - 175.
Yanovsky Y G, Kozlov G V, Karnet Y N . Phys Mesomech , 2013 . 16 9 - 22 . DOI:10.1134/S1029959913010025http://doi.org/10.1134/S1029959913010025 .
Liu K, Song Y, Feng W, Liu N N, Zhang W K, Zhang X . J Am Chem Soc , 2011 . 133 3226 - 3229 . DOI:10.1021/ja108022hhttp://doi.org/10.1021/ja108022h .
Florin E L, Rief M, Lehmann H, Ludwig M, Dornmair C, Moy V T, Gaub H E . Biosens Bioelectron , 1995 . 10 895 - 901 . DOI:10.1016/0956-5663(95)99227-Chttp://doi.org/10.1016/0956-5663(95)99227-C .
Butt H J, Jaschke M . Nanotechnology , 1995 . 6 1 - 7 . DOI:10.1088/0957-4484/6/1/001http://doi.org/10.1088/0957-4484/6/1/001 .
Garcia-Manyes S, Redondo-Morata L, Oncins G, Sanz F . J Am Chem Soc , 2010 . 132 12874 - 12886 . DOI:10.1021/ja1002185http://doi.org/10.1021/ja1002185 .
Butt H J, Franz V . Phys Rev E , 2002 . 66 031601 .
Loi S, Sun G X, Franz V, Butt H J . Phys Rev E , 2002 . 66 031602 .
Gonçalves R P, Agnus G, Sens P, Houssin C, Bartenlian B, Scheuring S . Nat Method , 2006 . 3 1007 - 1012 . DOI:10.1038/nmeth965http://doi.org/10.1038/nmeth965 .
Zheng J X, Xiong H M, Chen W Y, Lee K M, van Horn R M, Quirk R P, Lotz B, Thomas E L, Shi A C, Cheng S Z D . Macromolecules , 2006 . 39 641 - 650 . DOI:10.1021/ma052166whttp://doi.org/10.1021/ma052166w .
0
浏览量
16
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构