浏览全部资源
扫码关注微信
北京化工大学 化工资源有效利用国家重点实验室 生物医用材料北京实验室 北京 100029
E-mail: wuyx@mail.buct.edu.cn Yi-Xian Wu, E-mail: wuyx@mail.buct.edu.cn
纸质出版日期:2018-6,
收稿日期:2017-10-18,
修回日期:2017-11-22,
扫 描 看 全 文
常添笑, 张航天, 卢聪杰, 吴一弦. 通过正离子聚合原位制备壳聚糖-
Tian-xiao Chang, Hang-tian Zhang, Cong-jie Lu, Yi-xian Wu. In situ Synthesis and Characterization of Chitosan-g-polytetrahydrofuran Graft Copolymer/Ag Nanocomposite via Living Cationic Polymerization[J]. Acta Polymerica Sinica, 2018,0(6):700-711.
常添笑, 张航天, 卢聪杰, 吴一弦. 通过正离子聚合原位制备壳聚糖-
Tian-xiao Chang, Hang-tian Zhang, Cong-jie Lu, Yi-xian Wu. In situ Synthesis and Characterization of Chitosan-g-polytetrahydrofuran Graft Copolymer/Ag Nanocomposite via Living Cationic Polymerization[J]. Acta Polymerica Sinica, 2018,0(6):700-711. DOI: 10.11777/j.issn1000-3304.2017.17290.
采用活性正离子开环聚合方法合成聚四氢呋喃(PTHF)活性链,再通过“grafting onto”方式接枝到壳聚糖(CS)刚性主链上,原位制备壳聚糖-
g
-聚四氢呋喃接枝共聚物/银纳米复合材料. 采用FTIR、
1
H-NMR和XPS分别表征该接枝共聚物化学结构,采用AFM、TEM、HR-TEM、POM、SEM、TGA和UV研究复合材料的Ag含量、微观结构与形态,并研究该复合材料的载药/释药性和抗菌性能. 结果表明:通过上述方法可以原位制备出壳聚糖-
g
-聚四氢呋喃接枝共聚物/银(CS-
g
-PTHF/Ag)纳米复合材料,PTHF支链的平均分子量为1400 ~ 2600,以1000个氨基葡萄糖环为整体计算接枝链PTHF的平均支链数目为4 ~ 21,纳米Ag的质量含量为2.2% ~ 5.7%. 所制备的CS-
g
-PTHF接枝共聚物形成明显的微观相分离结构,主链CS的结晶性随着侧链PTHF接枝数目增大而受到限制,结晶形态发生变化;CS-
g
-PTHF接枝共聚物可作为药物载体,载药率在53% ~ 80%之间,载药微球的尺寸随侧链PTHF接枝数目增大而减小;CS-
g
-PTHF接枝共聚物载药微球具有一定的pH敏感性,CS-
g
6
-PTHF
1.4k
在pH = 6.0的弱酸性环境中释放速率快,25 h时药物释放完全. CS-
g
7
-PTHF
2.6k
/Ag-5.7纳米复合材料表现出良好的抗菌性,对于抗大肠杆菌,抑菌圈直径为13.0 mm,对于抗黑曲霉,抑菌圈直径为10.5 mm. 所制备的CS-
g
-PTHF/Ag纳米复合材料结合了壳聚糖良好的生物相容性、聚四氢呋喃优异的抗湿强度与柔韧性以及纳米银优良的抗菌性,在生物医学领域具有潜在应用前景.
A novel nanocomposite material of chitosan-
g
-polytetrahydrofuran (PTHF) graft copolymers with silver (Ag) nanoparticles
CS-
g
-PTHF/Ag
was successfully
in situ
prepared
via
combination of living cationic opening polymerization of tetrahydrofuran (THF) with controlled termination of living PTHF chains " grafting onto” chitosan macromolecular backbone. Chemical structure of CS-
g
-PTHF/Ag was confirmed by Fourier transform infrared spectroscopy (FTIR)
nuclear magnetic resonance (
1
H-NMR)
and X-ray photoelectron spectroscopy (XPS). The total content of Ag
drug releasing rate and micromorphology of CS-
g
-PTHF/Ag composites were characterized by ultraviolet spectroscopy (UV)
polarizing microscopy (POM)
atomic force microscopy (AFM)
scanning electron microscopy (SEM)
transmission electron microscopy (TEM) and high-resolution TEM (HR-TEM)
respectively. The results show that the acylation degree of average functional groups in single glucosamine was 20%. The number-average molecular weight (
M
n
) and average grafting number could be designed by changing the dosage of allylBr/AgClO
4
initiating system and the molar ratio of living PTHF chains to the ―NH
2
functional groups in chitosan backbone. The
M
n
PTHF
ranged from 1400 to 2600 and average grafting number increased from 4 to 21 on the basis of every 1000 glucosamine units along the macromolecular backbone. The PTHF branches influenced the crystallinity of the acylated chitosan backbone. The microphase separation of CS-
g
-PTHF/Ag nanocomposite was observed
and the micromorphology was related to grafting density in the CS-
g
-PTHF graft copolymers. The crystallization activity of the backbone was limited with an increase in the grafting number of PTHF branches. Meanwhile
the CS-
g
-PTHF graft copolymer was found to behave pH-sensitive drug delivery. The size of the drug-loaded microspheres decreased with the increasing average grafting number in CS-
g
-PTHF graft copolymers. Drug-loading percentage of different CS-
g
-PTHF drug deliveries varied from 53% to 80%. Taking CS-
g
6
-PTHF
1.4k
as an example
its drug-releasing rate (DRR) was accelerated in weak acid of phosphate buffered solution (pH = 6.0). The drug-releasing process included three stages: in the first stage (4 h)
CS-
g
6
-PTHF
1.4k
drug delivery released fast with a DRR of 63%. In the second stage from 4 h to 8 h
DRR was slightly changed. In the third stage
drug delivery accelerated and DRR reached 100%. Drug was inhibited to release in the simulated intestinal fluid (pH = 1.2)
simulated gastrointestinal fluid (pH = 7.4)
simulated blood (pH = 7.4). In simulated intestinal fluid (pH = 1.2)
drug release was fast in the first 4 h
and the accumulated drug release was 29%
and accumulated DRR was 35% within 25 h. In simulated gastrointestinal fluid (pH = 7.4) and simulated blood (pH = 7.4)
the drug-release rate reached a maximum in the first 2 h
and DDR was 51% in 25 h. The total mass content of Ag in CS-
g
-PTHF/Ag nanocomposite varied from 2.2% to 5.7%
which led to antibacterial performance in CS-
g
-PTHF/Ag nanocomposite. For CS-
g
7
-PTHF
2.6k
/Ag-5.7
diameter of inhibition zone of Escherichhia coli was 13.0 mm
and of Aspergillus niger was 10.5 mm. This novel CS-
g
-PTHF/Ag nanocomposite
with the biocompatibility of rigid chitosan
the humidity resistance of soft polytetrahydrofuran
and the antibacterial activity of nano-silver all combined
would have a prospect in biomedical application.
壳聚糖聚四氢呋喃接枝共聚物正离子聚合纳米复合材料
ChitosanPolytetrahydrofuranGraft copolymerCationic polymerizationNanocomposite
Souza H K S, Goncalves M D P, Gomez J . Biomacromolecules , . 2011 . 12 1015 - 1023 . DOI:10.1021/bm101356ghttp://doi.org/10.1021/bm101356g .
Majidi N S, Emtiazi G, Esfahani S S . J Med Bateriol , . 2016 . 5 ( 4 ): 9 - 14.
Ding B B, Gao H C, Song J H, Li Y Y, Zhang L N, Cao X D, Xu M, Cai J . ACS Appl Mater Interfaces , . 2016 . 8 19739 - 19746 . DOI:10.1021/acsami.6b05302http://doi.org/10.1021/acsami.6b05302 .
Ngah W S W, Teong L C, Hanafiah M A K M . Carbohydr Polym , . 2011 . 83 ( 4 ): 1446 - 1456 . DOI:10.1016/j.carbpol.2010.11.004http://doi.org/10.1016/j.carbpol.2010.11.004 .
LogithKumar R, KeshavNarayan A, Dhivya S, Chawla A, Saravanan S . Carbohydr Polym , . 2016 . 151 172 - 188 . DOI:10.1016/j.carbpol.2016.05.049http://doi.org/10.1016/j.carbpol.2016.05.049 .
Sun L Z, Wang Y Z, Jiang T Y, Zheng X, Zhang J H, Sun J, Sun C S, Wang S L . ACS Appl Mater Interfaces , . 2013 . 5 103 - 113 . DOI:10.1021/am302246shttp://doi.org/10.1021/am302246s .
Zong Z, Kimura Y, Takahashi M, Yamane H . Polymer , . 2000 . 41 ( 3 ): 899 - 906 . DOI:10.1016/S0032-3861(99)00270-0http://doi.org/10.1016/S0032-3861(99)00270-0 .
Liu J, Meng C G, Liu S, Kan J, Jin C H . Food Hydrocolloid , . 2017 . 63 457 - 466 . DOI:10.1016/j.foodhyd.2016.09.035http://doi.org/10.1016/j.foodhyd.2016.09.035 .
Pasanphan W, Rattanawongwiboon T, Rimdusit P, Piroonpan T . Radiat Phys Chem , . 2014 . 94 199 - 204 . DOI:10.1016/j.radphyschem.2013.06.026http://doi.org/10.1016/j.radphyschem.2013.06.026 .
Gunbas I D, Sezer U A, İz S G, Gürhan İ D, Hasirci N . Ind Eng Chem Res , . 2012 . 51 ( 37 ): 11946 - 11954 . DOI:10.1021/ie3015523http://doi.org/10.1021/ie3015523 .
Vasquez D, Milusheva R, Baumann P, Constantin D, Chami M, Palivan C G . Langmuir , . 2014 . 30 ( 4 ): 965 - 975 . DOI:10.1021/la404558ghttp://doi.org/10.1021/la404558g .
Guo A R, Yang W X, Yang F, Yu R, Wu Y X . Macromolecules , . 2014 . 47 5450 - 5461 . DOI:10.1021/ma501060yhttp://doi.org/10.1021/ma501060y .
Theiler S, Diamantouros S E, Jockenhoevel S, Keul H, Moeller M . Polym Chem , . 2011 . 2 ( 10 ): 2273 - 2283 . DOI:10.1039/c1py00262ghttp://doi.org/10.1039/c1py00262g .
Jikei M, Aikawa Y, Matsumoto K . High Perform Polym , . 2016 . 28 ( 9 ): 1015 - 1023 . DOI:10.1177/0954008315613423http://doi.org/10.1177/0954008315613423 .
Meyer W, Engelhardt S, Novosel E, Elling B, Wegener M, Krüger H . J Funct Biomater , . 2012 . 3 ( 2 ): 257 - 268 . DOI:10.3390/jfb3020257http://doi.org/10.3390/jfb3020257 .
Pomel C, Leborgne C, Cheradame H, Scherman D, Kichler A, Guegan P . Pharm Res , . 2008 . 25 ( 12 ): 2963 - 2971 . DOI:10.1007/s11095-008-9698-9http://doi.org/10.1007/s11095-008-9698-9 .
Buruiana T, Melinte V, Chibac A , Matiut S, Balan L . J Biomater Sci Polym Ed , . 2012 . 23 ( 7 ): 955 - 972 . DOI:10.1163/092050611X566801http://doi.org/10.1163/092050611X566801 .
Guo A R, Yang F, Yu R, Wu Y X . Chinese J Polym Sci , . 2015 . 33 ( 1 ): 23 - 35 . DOI:10.1007/s10118-015-1571-9http://doi.org/10.1007/s10118-015-1571-9 .
Wei Mengjuan(魏梦娟), Guo Anru(郭安儒), Wu Yixian(吴一弦). Acta Polymerica Sinica(高分子学报), 2017, (3): 506-515
Liu Xiao(刘晓), Li Shengran(李晟冉), Wu Yixian(吴一弦). Acta Polymerica Sinica(高分子学报), 2017, (11): 1-9
Wu Yixian(吴一弦), Zhou Qi(周琦), Du Jie(杜杰), Wang Nan(王楠). Acta Polymerica Sinica(高分子学报), 2017, (7): 1047-1057
0
浏览量
20
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构