浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
2.中国科学院大学 北京 100049
童辉, E-mail: chemtonghui@ciac.ac.cn Hui Tong, E-mail: chemtonghui@ciac.ac.cn
王利祥, E-mail: lixiang@ciac.an.cn Li-xiang Wang, E-mail: lixiang@ciac.an.cn
纸质出版日期:2018-2-20,
收稿日期:2017-7-21,
修回日期:2017-8-16,
扫 描 看 全 文
栗华, 吴晓甫, 杭昊, 陈永红, 童辉, 王利祥. 水分散超支化共轭聚合物纳米粒子的制备及其对苦味酸的高灵敏荧光检测[J]. 高分子学报, 2018,(2):248-256.
Li Hua, Wu Xiao-fu, Hang Hao, Chen Yong-hong, Tong Hui, Wang Li-xiang. Water-dispersed Hyperbranched Conjugated Polymer Nanoparticles for Highly Sensitive Fluorescent Detection of Picric Acid[J]. Acta Polymerica Sinica, 2018,(2):248-256.
栗华, 吴晓甫, 杭昊, 陈永红, 童辉, 王利祥. 水分散超支化共轭聚合物纳米粒子的制备及其对苦味酸的高灵敏荧光检测[J]. 高分子学报, 2018,(2):248-256. DOI: 10.11777/j.issn1000-3304.2018.17194.
Li Hua, Wu Xiao-fu, Hang Hao, Chen Yong-hong, Tong Hui, Wang Li-xiang. Water-dispersed Hyperbranched Conjugated Polymer Nanoparticles for Highly Sensitive Fluorescent Detection of Picric Acid[J]. Acta Polymerica Sinica, 2018,(2):248-256. DOI: 10.11777/j.issn1000-3304.2018.17194.
采用Suzuki细乳液聚合以及后功能化反应,制备了季铵盐末端的水分散超支化共轭聚合物纳米粒子(HCPN-QA),用于高灵敏度和高选择性的检测2,4,6-三硝基苯酚(PA).带正电荷的季铵盐端基以及疏水的超支化共轭聚合物核心,使HCPN-QA对水中呈酸性的PA产生静电吸引与疏水富集的协同作用,产生高度灵敏的荧光猝灭响应,检测限达到0.18 μg/L,猝灭常数达到6.36×10
7
L/mol,相比于有机相分散的超支化共轭聚合物纳米粒子HCPN-OMe,HCPN-QA检测限低了4个数量级,猝灭常数高出3个数量级.通过研究HCPN-QA粒径对PA检测灵敏度的影响,发现纳米粒子粒径对PA的检测灵敏度影响很小.并且,HCPN-QA对PA的猝灭响应显著高于TNT及其他硝基爆炸物,表现出很好的选择性以及竞争选择性.此外,HCPN-QA检测试纸对PA固体颗粒的检测表现出很高的灵敏度,检测限达到66 pg/mm
2
.
Water-dispersed hyperbranched conjugated polymer nanoparticles (HCPN-QA) with quaternary ammonium salt as terminal groups were prepared by Suzuki polymerization in miniemulsion
followed by post-functionalization reaction
for highly sensitive and selective sensing of picric acid (PA) in aqueous solutions. By taking advantage of the positively charged quaternary ammonium salt terminal groups and hydrophobic cavities inside the hyperbranched core
bright blue emissive HCPN-QA can efficiently bind with PA in water by electrostatic attraction and hydrophobic encapsulation interaction
leading to highly efficient fluorescence quenching. The quenching constant of HCPN-QA was 6.36×10
7
L/mol
which was three orders higher than that of its organic solution-dispersed hyperbranched conjugated polymer nanoparticle analogue (HCPN-OMe). HCPN-QA was capable of sensing PA in water with a detection limit of 7.8×10
-10
mol/L (0.18 μg/L)
which was four orders of magnitude lower than that of HCPN-OMe (0.34 mg/L). Meanwhile
this value was also lower than the maximum permissible level (1 μg/L) for PA in drinking water set by World Health Organization (WHO). Moreover
by decreasing the amount of surfactants during the polymerization
nanoparticles with small diameter were obtained for further studying the relationship between particle size and the sensitivity for PA sensing. The fluorescent titration study indicated that particle size of HCPN-QA had little effect on the sensitivity for PA sensing. Furthermore
by combining electrostatic attraction and hydrophobic encapsulation interaction
HCPN-QA also showed much higher fluorescence quenching response to PA over other analytes
including 2
4
6-trinitrotoluene (TNT)
2
4-dinitrotoluene (DNT)
nitrobenzene
cyclotetramethylenetetranitramine (HMX)
1
3
5-trinitro-1
3
5-triazinane (RDX)
nitromethane
ammonium nitrate
chlorobenzene
toluene and phenol in water. Especially
HCPN-QA showed nearly 60-fold higher quenching constant for PA than that of TNT
indicating that HCPN-QA had not only a high sensitivity
but also a good selectivity for PA sensing. In addition
contact mode detection was further performed using fluorescent paper strips based on HCPN-QA for naked eye detection of PA with a detection limit of 66 pg/mm
2
.
超支化共轭聚合物纳米粒子荧光传感苦味酸高灵敏检测
Hyperbranched conjugated polymerNanoparticleFluorescentsensorPicric acidSensitive detection
T Li , Y L Shao , S T Zhang , J C Qin , L Fan , L Liu , B D Wang , Z Y Yang , Y H Wang . J Lumin , 2017 . 181 345 - 351 . DOI:10.1016/j.jlumin.2016.09.036http://doi.org/10.1016/j.jlumin.2016.09.036.
W Wei , R J Lu , S Y Tang , X Y Liu . J Mater Chem A , 2015 . 3 ( 8 ): 4604 - 4611 . DOI:10.1039/C4TA06828Ahttp://doi.org/10.1039/C4TA06828A.
S Shanmugaraju , C Dabadie , K Byrne , A J Savyasachi , D Umadevi , W Schmitt , JA Kitchen , T Gunnlaugsson . Chem Sci , 2017 . 8 ( 2 ): 1535 - 1546.
R G Ewing , D A Atkinson , G A Eiceman , G J Ewing . Talanta , 2001 . ( 54 ): 515 - 529.
Y Zhang , X X Ma , S C Zhang , C H Yang , Z Ouyang , X R Zhang . Analyst , 2009 . 134 ( 1 ): 176 - 181 . DOI:10.1039/B816230Ahttp://doi.org/10.1039/B816230A.
R D Luggar , M J Farquharson , J A Horrocks , R J Lacey . X-Ray Spectrometry , 1998 . 27 82 - 94.
J R Huang , L Y Wang , C C Shi , Y J Dai , C P Gu , J H Liu . Sens Actuat B , 2014 . ( 196 ): 567 - 573.
A Tao , F Kim , C Hess , J Goldberger , R R He , Y G Sun , P D Yang . Nano Lett , 2003 . 3 ( 9 ): 1229 - 1233 . DOI:10.1021/nl0344209http://doi.org/10.1021/nl0344209.
S Shanmugaraju , P S Mukherjee . Chemistry , 2015 . 21 ( 18 ): 6656 - 6666 . DOI:10.1002/chem.201406092http://doi.org/10.1002/chem.201406092.
T H Liu , K R Zhao , K Liu , L P Ding , S W Yin , Y Fang . J Hazard Mater , 2013 . ( 246-247 ): 52 - 60.
Y Q Xu , B H Li , W W Li , J Zhao , S G Sun , Y Pang . Chem Commun (Camb) , 2013 . 49 ( 42 ): 4764 - 4766 . DOI:10.1039/c3cc41994khttp://doi.org/10.1039/c3cc41994k.
S G Liu , D Luo , N Li , W Zhang , J L Lei , N B Li , H Q Luo . ACS Appl Mater Interfaces , 2016 . 8 ( 133 ): 21700 - 21709.
L P Ding , Y M Bai , Y Gao , G J Ren , G J Blanchard , Y Fang . Langmuir , 2014 . 30 ( 26 ): 7645 - 7653 . DOI:10.1021/la5011264http://doi.org/10.1021/la5011264.
Q Zhou , T M Sawager . J Am Chem Soc , 1995 . 117 ( 50 ): 12593 - 12602 . DOI:10.1021/ja00155a023http://doi.org/10.1021/ja00155a023.
S W Thomas , G D Joly , T M Swager . Chem Rev , 2007 . 107 ( 4 ): 1339 - 1386 . DOI:10.1021/cr0501339http://doi.org/10.1021/cr0501339.
W B Wu , R L Tang , Q Q Li , Z Li . Chem Soc Rev , 2015 . 12 ( 44 ): 3997 - 4022.
W B Wu , S H Ye , L J Huang , L Xiao , Y J Fu , Q Huang , G Yu , Y Q Liu , J G Qin , Q Q Li , Z Li . J Mater Chem , 2012 . 13 ( 22 ): 6374 - 6382.
K R Ghosh , S K Saha , Z Y Wang . Polym Chem , 2014 . 5 ( 19 ): 5638 - 5643.
T M Geng , Z M Zhu , X Wang , H Y Xia , Y Wang , D K Li . Sens Actuators B , 2107 . 244 334 - 343.
H B Li , X F Wu , B W Xu , H Tong , L X Wang . RSC Adv , 2013 . 3 8645 - 8648 . DOI:10.1039/c3ra40901ehttp://doi.org/10.1039/c3ra40901e.
S Shaligram , P P Wadgaonkar , U K Kharul . J Mater Chem A , 2014 . 2 ( 34 ): 13983 - 13989 . DOI:10.1039/C4TA02766Chttp://doi.org/10.1039/C4TA02766C.
A H Malik , S Hussain , S A Kalita , P K Iyer . ACS Appl Mater Interfaces , 2015 . 7 ( 48 ): 26968 - 26976 . DOI:10.1021/acsami.5b08068http://doi.org/10.1021/acsami.5b08068.
Z H Xiang , D P Cao . Macromol Rapid Commun , 2012 . 33 ( 14 ): 1184 - 1190.
Y Y Long , H B Chen , H M Wang , Z Peng , Y F Yang , G Q Zhang , N Li , F Liu , J Pei . Anal Chim Acta , 2012 . 744 82 - 91 . DOI:10.1016/j.aca.2012.07.028http://doi.org/10.1016/j.aca.2012.07.028.
G Sathiyan , P Sakthivel . RSC Adv , 2016 . 6 ( 108 ): 106705 - 106715 . DOI:10.1039/C6RA22632Ahttp://doi.org/10.1039/C6RA22632A.
T M Geng , S N Ye , Y Wang , H Zhu , X Wang , X Liu . Talanta , 2017 . 165 282 - 288 . DOI:10.1016/j.talanta.2016.12.046http://doi.org/10.1016/j.talanta.2016.12.046.
N N Sang , C X Zhan , D P Cao . J Mater Chem A , 2015 . 3 ( 1 ): 92 - 96 . DOI:10.1039/C4TA04903Ahttp://doi.org/10.1039/C4TA04903A.
B W Xu , X F Wu , H B Li , H Tong , L X Wang . Macromolecules , 2011 . 44 ( 13 ): 5089 - 5092 . DOI:10.1021/ma201003fhttp://doi.org/10.1021/ma201003f.
Y C Wu , S H Luo , L Cao , K Jiang , L Y Wang , J C Xie , Z Y Wang . Anal Chim Acta , 2017 . 976 74 - 83 . DOI:10.1016/j.aca.2017.04.022http://doi.org/10.1016/j.aca.2017.04.022.
A S Tanwar , S Hussain , A H Malik , M A Afroz , P K Iyer . ACS Sensors , 2016 . 1 ( 8 ): 1070 - 1077 . DOI:10.1021/acssensors.6b00441http://doi.org/10.1021/acssensors.6b00441.
J Z Liu , Y C Zhong , P Lu , Y Hong , J W Y Lam , M Faisal , Y Yu , K S Wong , B Z Tang . Polym Chem , 2010 . 1 ( 4 ): 426 - 429.
Y W Wu , A J Qin , B Z Tang . Chinese J Polym Sci , 2017 . 2 ( 35 ): 141 - 154.
X F Wu , H Hang , H Li , Y H Chen , H Tong , L X Wang . Mater Chem Front , 2017 . 1 1875 - 1880.
0
浏览量
22
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构