浏览全部资源
扫码关注微信
1.南昌大学化学学院 南昌 330031
2.江西省新能源化学重点实验室/高分子研究所 南昌 330031
谈利承, E-mail: tanlicheng@ncu.edu.cn Li-cheng Tan, E-mail: tanlicheng@ncu.edu.cn
陈义旺, E-mail: ywchen@ncu.edu.cn Yi-wang, Chen, E-mail: ywchen@ncu.edu.cn
纸质出版日期:2018-2-20,
收稿日期:2017-8-4,
修回日期:2017-8-26,
扫 描 看 全 文
肖玉娟, 何倩楠, 周环宇, 徐海涛, 谈利承, 陈义旺. 原位聚合聚(3, 4-乙烯二氧噻吩):
Xiao Yu-juan, He Qian-nan, Zhou Huan-yu, Xu Hai-tao, Tan Li-cheng, Chen Yi-wang.
肖玉娟, 何倩楠, 周环宇, 徐海涛, 谈利承, 陈义旺. 原位聚合聚(3, 4-乙烯二氧噻吩):
Xiao Yu-juan, He Qian-nan, Zhou Huan-yu, Xu Hai-tao, Tan Li-cheng, Chen Yi-wang.
以带磺酸基团的
π
共轭聚电解质为模板,采用化学氧化还原方法制备了在水相中稳定分散的聚(3,4-乙烯二氧噻吩)(PEDOT)与聚电解质的复合物,并用作聚合物太阳能电池的空穴传输层.通过傅里叶变换红外光谱(FTIR)、紫外可见光谱(UV-Vis)、紫外光电子能谱(UPS)、原子力显微镜(AFM)、透射电子显微镜(TEM)和接触角等对聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸(PEDOT:PSS)和复合物薄膜的形貌和光电性能进行测试与表征.结果表明,相比于PEDOT:PSS,PEDOT:聚电解质复合物作为空穴传输层,具有合适的能级结构、高达95%的透光率(30 nm)、更疏水的表面形貌以及更高的空穴迁移率,有利于与活性层形成欧姆接触并提高空穴的注入和收集效率,进而提高器件的光伏性能.
Poly(3
4-ethylenedioxythiophene) (PEDOT) is usually dispersed in water by incorporating polystyrene sulfonate (PSS) as a charge compensator and a template for polymerization. The polymerization behavior of 3
4-ethylenedioxythiophene (EDOT) without assistance of insulating PSS was explored. Due to their semiconducting and hydrophilic characteristics
π
-conjugated polyelectrolytes with sulfonic acid groups
namely PCPDT-T and PCPDT-2T
were used as template for
in situ
oxidative polymerization of PEDOT. The obtained PEDOT:polyelectrolyte composites showed good dispersibility in aqueous solution
which was used as hole transport layer (HTL) in polymer solar cells (PSCs). The morphologies and photoelectric properties of PEDOT:PSS and PEDOT:polyelectrolyte composites were characterized by Fourier transform infrared spectroscopy
ultraviolet-visible spectroscopy
ultraviolet photoelectron spectroscopy
atomic force microscopy
transmission electron microscopy and contact angle test
respectively. PEDOT:polyelectrolyte composites displayed suitable energy level
transmittance up to 95% (30 nm)
hydrophobic surface morphology
as well as superior hole mobility
which were in favour of forming Ω contact with the active layer and increasing the injection and collection efficiency of the holes. Thus
improving the device photovoltaic performance. The current density-voltage (J-V) characteristics of the PSCs with the structure of Glass/ITO/HTL/PTB7-Th:PC
71
BM/PFN/Al were measured under one standard sun by solar simulator with an Air Mass 1.5 global (AM 1.5G) and an irradiation intensity of 100 mW/cm
2
. Compared to the photovoltaic characteristics for PEDOT:PSS based device
PSCs with PEDOT:T (1:2) as HTL yielded the highest power conversion efficiency (PCE) of 8.6% with a short current density (
J
SC
) of 18.07 mA/cm
2
open circuit voltage (
V
OC
) of 0.77 and fill factor (FF) of 61.31%
respectively. Compared to that of PEDOT:PSS
the obvious increased
J
SC
for PEDOT:polyelectrolyte composites based PSCs was ascribed to the high hole mobility and transmittance
which were consistent with the results from the space-charge limited current (SCLC) method and the external quantum efficiency (EQE) measurement.
聚(3 4-乙烯二氧噻吩)聚电解质原位聚合聚合物太阳能电池复合材料
Poly (3 4-ethylenedioxythiophene)PolyelectrolyteIn situ polymerizationPolymer solar cellsComposite
C K Chiang , C R J Fincher , Y W Park , A J Heeger , H Shirakawa , E J Louis , S C Gau , A G MacDiarmid . Phys Rev Lett , 1977 . 39 1098 - 1101 . DOI:10.1103/PhysRevLett.39.1098http://doi.org/10.1103/PhysRevLett.39.1098.
V N Sheemol , B TyagvI , R V Jasra . J Mol Catal A Chem , 2006 . 252 194 - 201 . DOI:10.1016/j.molcata.2006.01.068http://doi.org/10.1016/j.molcata.2006.01.068.
L Groenendaal , F Jonas , D Freitag , H Pielartzik , J R Reynolds . Adv Mater , 2000 . 12 481 - 494 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095.
S Kirchmeyer , K Reuter . J Mater Chem , 2005 . 15 2077 - 2088 . DOI:10.1039/b417803nhttp://doi.org/10.1039/b417803n.
J Ouyang , C W Chu , F C Chen , Q Xu , Y Yang . Adv Funct Mater , 2005 . 15 203 - 208 . DOI:10.1002/(ISSN)1616-3028http://doi.org/10.1002/(ISSN)1616-3028.
A I Hofmann , W T T Smaal , M Mumtaz , D D Katsigiannopoulos , D C Brochon , F Brochon , D O R Hild , H D E Cloutet , P D G Hadziioannou . Angew Chem Int Ed , 2015 . 127 8626 - 8630 . DOI:10.1002/ange.201503024http://doi.org/10.1002/ange.201503024.
Y Tao , K Yuan , T Chen , P Xu , H Li , R Chen , C Zheng , L Zhang , W Huang . Adv Mater , 2014 . 26 7931 - 7958 . DOI:10.1002/adma.v26.47http://doi.org/10.1002/adma.v26.47.
T Heumueller , W R Mateker , A Distler , U F Fritze , R Cheacharoen , W H Nguyen , M Biele , M Salvador , M von Delius , H J Egelhaaf , M D McGehee , C J Brabec . Energy Environ Sci , 2016 . 9 247 - 256 . DOI:10.1039/C5EE02912Khttp://doi.org/10.1039/C5EE02912K.
C Zuo , H J Bolink , H Han , J Huang , D Cahen , L Ding . Adv Sci , 2016 . 3 1500324 DOI:10.1002/advs.201500324http://doi.org/10.1002/advs.201500324.
D Alemu , H Y Wei , K C Ho , C W Chu . Energy Environ Sci , 2012 . 5 9662 - 9671 . DOI:10.1039/c2ee22595fhttp://doi.org/10.1039/c2ee22595f.
K Nara , K Seyoung , H L Seoung , H L Byoung , H K Yung , R J Yong , J K Bong , L Kwanghee . Adv Mater , 2014 . 26 2268 - 2272 . DOI:10.1002/adma.v26.14http://doi.org/10.1002/adma.v26.14.
W Meng , R Ge , Z F Li , J H Tong , T F Liu , Q Zhao , S X Xiong , F Y Jiang , L Mao , Y H Zhou . ACS Appl Mater Interfaces , 2015 . 7 14089 - 14094 . DOI:10.1021/acsami.5b03309http://doi.org/10.1021/acsami.5b03309.
F J Lim , K Ananthanarayanan , J Luther , G W Ho . J Mater Chem , 2012 . 22 25057 - 25064 . DOI:10.1039/c2jm35646ehttp://doi.org/10.1039/c2jm35646e.
G Fang , S Wu , Z Xie , Y Geng , L Wang . Macromol Chem Phys , 2011 . 212 1846 - 1851.
B Kadem , W Cranton , A Hassan . Org Electron , 2015 . 24 73 - 79 . DOI:10.1016/j.orgel.2015.05.019http://doi.org/10.1016/j.orgel.2015.05.019.
M G Han , S H Foulger . Chem Commun , 2005 . 1 3092 - 3094.
X Zhang , J-S Lee , G S Lee , D-K Cha , M J Kim , D J Yang , S K Manohar . Macromolecules , 2006 . 39 470 - 472 . DOI:10.1021/ma051975chttp://doi.org/10.1021/ma051975c.
D Hohnholz , A G MacDiarmid , D M Sarno , W E J Jr . Chem Commun , 2001 . 23 2444 - 2445.
X Du , Z Wang . Electrochim Acta , 2003 . 48 1713 - 1717 . DOI:10.1016/S0013-4686(03)00143-9http://doi.org/10.1016/S0013-4686(03)00143-9.
Y D Li , M Y Liu , Y Li , K Yun , L J Xu , W Wu , R F Chen , X Q Qin , H L Yip . Adv Energy Mater , 2016 . 6 1601499 .
Yonghong Deng , Zhuoxi Li , Xueqing Qiu , Dacheng Zhao . Acta Polymerica Sinica , 2015 . ( 5 ): 589 - 595 . http://www.gfzxb.org/CN/abstract/abstract14336.shtml.
邓 永红 , 黎 卓熹 , 邱 学青 , 赵 大成 . 高分子学报 , 2015 . ( 5 ): 589 - 595 . http://www.gfzxb.org/CN/abstract/abstract14336.shtml.
H T Xu , X Fu , X F Cheng , L Q Huang , D Zhou , L Chen , Y W Chen . J Mater Chem A , 2017 . 5 14689 - 14696 . DOI:10.1039/C7TA02590Dhttp://doi.org/10.1039/C7TA02590D.
H Dan , G Yang , J Song , L Niu , A Ivaska . J Electroanal Chem , 2007 . 602 24 - 28 . DOI:10.1016/j.jelechem.2006.11.027http://doi.org/10.1016/j.jelechem.2006.11.027.
S Braun , W R Salaneck , M Fahlman . Adv Mater , 2009 . 21 1450 - 1472 . DOI:10.1002/adma.v21:14/15http://doi.org/10.1002/adma.v21:14/15.
Y J Cheng , C H Hsieh , P J Li , C S Hsu . Adv Funct Mater , 2011 . 21 1723 - 1732 . DOI:10.1002/adfm.201002502http://doi.org/10.1002/adfm.201002502.
H Zhou , Y Zhang , C K Mai , S D Collins , T Q Nguyen , G C Bazan , A J Heeger . Adv. Mater , 2014 . 26 780 - 785 . DOI:10.1002/adma.201302845http://doi.org/10.1002/adma.201302845.
S A Chen , M Y Hua . Macromolecules , 1993 . 26 7108 - 7110 . DOI:10.1021/ma00077a066http://doi.org/10.1021/ma00077a066.
0
浏览量
14
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构