浏览全部资源
扫码关注微信
中国科学院大连化学物理研究所 洁净能源国家实验室/催化基础国家重点实验室 大连 116023
郭鑫, E-mail: guoxin@dicp.ac.cn Xin Guo, E-mail: guoxin@dicp.ac.cn
李灿, E-mail:canli@dicp.ac.cn Can Li, E-mail:canli@dicp.ac.cn
纸质出版日期:2018-2-20,
收稿日期:2017-8-22,
修回日期:2017-9-19,
扫 描 看 全 文
傅平, 郭鑫, 李灿. 含有不同卤素阴离子的离子液体作为倒置聚合物太阳电池阴极界面层的研究[J]. 高分子学报, 2018,(2):266-272.
Ping Fu, Xin Guo, Can Li. Ionic Liquids Containing Different Halogen Anions as Cathode Interlayer for Inverted Polymer Solar Cells[J]. Acta Polymerica Sinica, 2018,(2):266-272.
傅平, 郭鑫, 李灿. 含有不同卤素阴离子的离子液体作为倒置聚合物太阳电池阴极界面层的研究[J]. 高分子学报, 2018,(2):266-272. DOI: 10.11777/j.issn1000-3304.2018.17234.
Ping Fu, Xin Guo, Can Li. Ionic Liquids Containing Different Halogen Anions as Cathode Interlayer for Inverted Polymer Solar Cells[J]. Acta Polymerica Sinica, 2018,(2):266-272. DOI: 10.11777/j.issn1000-3304.2018.17234.
采用离子液体作为阴极界面层来制备高效的倒置聚合物太阳电池,并考察了含有不同卤素阴离子的离子液体对器件光电转换效率的影响规律.由1-苄基-3-甲基咪唑阳离子和卤素阴离子组成的离子液体作为阴极界面层、PBDTTT-C:PC
71
BM作为活性层制备的倒置器件,光电转换效率达到6.55%,高于不采用离子液体作为阴极界面层的器件效率;当采用PTB7-Th:PC
71
BM作为活性层时,可获得8.24%的光电转换效率.离子液体通过界面偶极作用可以有效降低电极和活性层之间的接触势垒,减小串联电阻,从而提高器件效率.同时,发现碘离子作为阴离子的1-苄基-3-甲基咪唑离子液体比含氯离子、溴离子的1-苄基-3-甲基咪唑离子液体作为阴极界面层更有利于提高倒置器件的光伏性能.
Bulk-heterojunction polymer solar cells (PSCs) have attracted great research attention owing to their advantages of low cost
light weight
and their feasibility to fabricate flexible devices. Power conversion efficiency (PCEs) exceeding 12% for single-junction invertedpolymer solar cells (IPSCs) has been reported in the last years. Fast advancement of PCE benefits mainly from new materials synthesized
morphology optimization of active layer and interfacial engineering. Especially
the interfacial engineering has drawn great attention in recent years. To fabricate efficient IPSCs
a cathode interlayer (CIL) is usually needed between the ITO cathode and the photoactive layer to reduce the work function (WF) of the ITO cathode and to lower the energy barriersfor efficient charge-transfer due to an energy-level mismatch between the high WF of ITO cathode and the lowest unoccupied molecular orbital (LUMO) level of fullerene acceptor. In this work
we employed ionic liquids with different halogen anions as CILs for efficient IPSCs
and explored the influence of such halogen anions on the PCE of the IPSCs. A PCE of 6.55% was achieved for the IPSCs with ionic liquids as the CIL and PBDTTT-C:PC
71
BM as the active layer
much higher than those without the CIL. When using the PTB7-Th:PC
71
BM as the active layer
a higher PCE of 8.24% was obtained. Ionic liquids could effectively reduce the contact barrier and the series resistance between the ITO cathode and the active layer due to the interfacial dipole
and thus improving the PCE of the IPSCs. Meanwhile
it was found that the IPSC with iodide ionic liquid ([BzMIM]Ⅰ) as the CIL could afford a higher PCE than that with bromide or chloride ionic liquids ([BzMIM]
Cl
[BzMIM]Br)
mainly attributing to the greater decreases of the ITO work function and the contact resistance in the case with the former ([BzMIM]
Ⅰ) as the CIL.
聚合物太阳电池阴极界面层离子液体卤素阴离子
Polymer solar cellsCathode interlayerIonic liquidsHalogen anion
S Gunes , H Neugebauer , N S Sariciftci . Chem Rev , 2007 . 107 ( 4 ): 1324 - 1338 . DOI:10.1021/cr050149zhttp://doi.org/10.1021/cr050149z.
P Fu , X Guo , B Zhang , T Chen , W Qin , Y Ye , J H Hou . J Mater Chem A , 2016 . 4 ( 43 ): 16824 - 16829 . DOI:10.1039/C6TA07105Hhttp://doi.org/10.1039/C6TA07105H.
X F Liao , J Wang , S Y Chen , L Chen , Y W Chen . Chinese J Polym Sci , 2016 . 34 ( 4 ): 491 - 504 . DOI:10.1007/s10118-016-1761-0http://doi.org/10.1007/s10118-016-1761-0.
Z C He , C M Zhong , S J Su , M Xu , H B Wu , Y Cao . Nat Photon , 2012 . 6 ( 9 ): 591 - 595 . DOI:10.1038/nphoton.2012.190http://doi.org/10.1038/nphoton.2012.190.
Y H Zhou , C Fuentes-Hernandez , J Shim , J Meyer , A J Giordano , H Li , P Winget . Science , 2012 . 336 ( 6079 ): 327 - 332 . DOI:10.1126/science.1218829http://doi.org/10.1126/science.1218829.
Y M Sun , J H Seo , C J Takacs , J Seifter , A J Heeger . Adv Mater , 2011 . 23 ( 14 ): 1679 - 1684 . DOI:10.1002/adma.201004301http://doi.org/10.1002/adma.201004301.
M Abidi , S B Jabrallah , J P Corriou . Desalination , 2011 . 279 ( 1-3 ): 315 - 324 . DOI:10.1016/j.desal.2011.06.033http://doi.org/10.1016/j.desal.2011.06.033.
Z A Tan , W Q Zhang , Z G Zhang , D P Qian , Y Huang , J H Hou , Y F Li . Adv Mater , 2012 . 24 ( 11 ): 1476 - 1481 . DOI:10.1002/adma.201104863http://doi.org/10.1002/adma.201104863.
Z Y Liu , W Li , R X Peng , W G Jiang , Q Guan , T Lei , R J Yang . J Mater Chem A , 2017 . 5 ( 21 ): 10154 - 10160 . DOI:10.1039/C7TA02427Dhttp://doi.org/10.1039/C7TA02427D.
X H Ouyang , R X Peng , L Ai , X Y Zhang , Z Y Ge . Nat Photon , 2015 . 9 ( 8 ): 520 - 524 . DOI:10.1038/nphoton.2015.126http://doi.org/10.1038/nphoton.2015.126.
C H Duan , K Zhang , C M Zhong , F Huang , Y Cao . Chem Soc Rev , 2013 . 42 ( 23 ): 9071 - 9104 . DOI:10.1039/c3cs60200ahttp://doi.org/10.1039/c3cs60200a.
H Zheng , Y N Zheng , N L Liu , N Ai , Q Wang , S Wu , J H Zhou . Nat Commun , 2013 . 4 46 - 50 . http://www.ncbi.nlm.nih.gov/pubmed/23736123.
H Choi , H Cho , S Song , H Suh , S Park , J Y Kim . Phys Chem Chem Phys , 2010 . 12 ( 46 ): 15309 - 15314 . DOI:10.1039/c0cp01754jhttp://doi.org/10.1039/c0cp01754j.
B R Lee , H Choi , J SunPark , H J Lee , S O Kim , J Y Kim , M H Song . J Mater Chem , 2011 . 21 ( 7 ): 2051 - 2053 . DOI:10.1039/c0jm03688ahttp://doi.org/10.1039/c0jm03688a.
G H Kim , H B Kim , B Walker , H Choi , C Yang , J Park , J Y Kim . ACS Appl Mater Interfaces , 2013 . 5 ( 5 ): 1757 - 1760 . DOI:10.1021/am3029766http://doi.org/10.1021/am3029766.
H Brine , J F Sanchez-Royo , H J Bolink . Org Electron , 2013 . 14 ( 1 ): 164 - 168 . DOI:10.1016/j.orgel.2012.09.027http://doi.org/10.1016/j.orgel.2012.09.027.
L Q Huang , X F Cheng , J Yang , L F Zhang , W H Zhou , S Q Xiao , L C Tan . ACS Appl Mater Interfaces , 2016 . 8 ( 40 ): 27018 - 27025 . DOI:10.1021/acsami.6b09078http://doi.org/10.1021/acsami.6b09078.
P Fu , L Q Huang , W Yu , D Yang , G J Liu , L Y Zhou , J Zhang . Nano Energy , 2015 . 13 275 - 282 . http://www.sciencedirect.com/science/article/pii/S2211285515000919.
W Yu , L Huang , D Yang , P Fu , L Zhou , J Zhang , C Li . J Mater Chem A , 2015 . 3 ( 20 ): 10660 - 10665 . DOI:10.1039/C5TA00930Hhttp://doi.org/10.1039/C5TA00930H.
W Yu , L Y Zhou , S W Yu , P Fu , X Guo , C Li . Org Electron , 2017 . 42 387 - 392 . DOI:10.1016/j.orgel.2016.12.011http://doi.org/10.1016/j.orgel.2016.12.011.
J S Huang , G Li , Y Yang . Adv Mater , 2008 . 20 ( 3 ): 415 - 419 . DOI:10.1002/(ISSN)1521-4095http://doi.org/10.1002/(ISSN)1521-4095.
L Q Huang , L Chen , P R Huang , F Y Wu , L C Tan , S Q Xiao , W Zhong . Adv Mater , 2016 . 28 ( 24 ): 4852 - 4860 . DOI:10.1002/adma.v28.24http://doi.org/10.1002/adma.v28.24.
0
浏览量
12
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构