浏览全部资源
扫码关注微信
1.南方科技大学化学系 深圳 518055
2.厦门大学材料学院 厦门 361005
3.Institute for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont 60439, USA
4.Institute for Molecular Engineering, The University of Chicago, Chicago 60637, USA
陈伟, E-mail: wchen@anl.gov Wei Chen, E-mail: wchen@anl.gov
刘安华, E-mail: ahliu@xmu.edu.cn An-hua Liu, E-mail: ahliu@xmu.edu.cn
何凤, E-mail: hef@sustc.edu.cn Feng He, E-mail: hef@sustc.edu.cn
纸质出版日期:2018-2-20,
收稿日期:2017-8-28,
修回日期:2017-9-25,
扫 描 看 全 文
胡志明, 陈晖, 钟筱蔚, 曲建飞, 陈伟, 刘安华, 何凤. 卤原子取代苯并噻二唑聚合物给体材料的合成及其光伏性能研究[J]. 高分子学报, 2018,(2):273-283.
Zhi-ming Hu, Hui Chen, Xiao-wei Zhong, Jian-fei Qu, Wei Chen, An-hua Liu, Feng He. Design and Synthesis of Halogen Atom Substituted Benzothiadiazole-based Donor Polymers for Efficient Solar Energy Conversion[J]. Acta Polymerica Sinica, 2018,(2):273-283.
胡志明, 陈晖, 钟筱蔚, 曲建飞, 陈伟, 刘安华, 何凤. 卤原子取代苯并噻二唑聚合物给体材料的合成及其光伏性能研究[J]. 高分子学报, 2018,(2):273-283. DOI: 10.11777/j.issn1000-3304.2018.17243.
Zhi-ming Hu, Hui Chen, Xiao-wei Zhong, Jian-fei Qu, Wei Chen, An-hua Liu, Feng He. Design and Synthesis of Halogen Atom Substituted Benzothiadiazole-based Donor Polymers for Efficient Solar Energy Conversion[J]. Acta Polymerica Sinica, 2018,(2):273-283. DOI: 10.11777/j.issn1000-3304.2018.17243.
通过对苯并噻二唑单元进行氟、氯等卤原子取代,并同时调节烷基侧链的长度,设计合成了一系列基于苯并噻二唑四噻吩类的聚合物太阳电池材料.不同卤原子取代以及烷基侧链的长度都会影响聚合物的结晶性和薄膜聚集形貌从而改变其带隙和电荷传输性质.氟、氯原子的引入可调节聚合物的能级结构,而且相对于氟原子而言,具有更大原子半径的氯原子的引入可在更大尺度下调节能级结构,从而大幅提高相应太阳电池的开路电压,同时通过侧链的优化可进一步调节聚合物的微观聚集结构,改善器件能量转换效率.结果表明,在氯原子和氟原子共同作用的情况下,引入较长的侧链有利于提升聚合物的开路电压和短路电流,从而获得较好的器件性能.其中,以氯、氟共同取代的聚合物PCFBT4T-2OD与PC
71
BM为活性层的器件性能最佳,能量转换效率可达8.84%.
Halogen substituted benzothiadiazole polymers with different length of alkyl side chains were synthesized
via
Stille coupling and used as donor materials in polymer solar cells (PSC). These polymers exhibited good solubility in common organic solvents
excellent film forming ability
and broad absorption properly towards the sun light. By introducing the halogen atoms to the backbone
in particularly the large chlorine atoms
fullerene-based (PC
71
BM) bulk heterojunction PSCs of these polymers could achieve enhanced open-circuit voltage and short-circuit current
and eventually the power conversion efficiency could be dramatically improved. It was found that the halogen substitution and various alkyl side chains could highly affect the polymers' band gaps and charge transport properties
through influencing the molecular orientation and crystallinity. With regard to tuning the energy levels
compared with fluorine atom
chlorine atom with a bigger atomic radius could reduce more efficiently the energy levels
thereby further improving the open-circuit voltage of the corresponding PSCs. In this study
the PSCs based on one-chlorine-and-one-fluorine-substituted PCFBT4T-2OD
with PC
71
BM used as the acceptor
exhibited an open-circuit voltage of 0.72 V
a short-circuit current of 17.61 mA cm
-2
and the highest power conversion efficiency of 8.84%. From the grazing-incidence wide-angle X-ray scattering (GIWAXS) experiments
those polymers with the halogen atoms substitutions showed a mixed "face-on" and "edge-on" conformation in their blended films. The introduction of fluorine atoms in the polymer PCFBT4T-2OD further enhanced the
π
-
π
stacking
compared with the one-chlorine substituted PCBT4T-2BO
which was helpful for the charge transport in the active layer and to enhance the device performance in PSCs. Those results demonstrated that the halogen substitution was an effective molecular design strategy to modify the polymer aggregation and morphology for optimized polymer solar cell applications.
聚合物太阳电池给体材料卤原子取代开路电压
Polymer solar cellsDonor materialsHalogen atom substitutionOpen-circuit voltage
R S Ashraf , B C Schroeder , H A Bronstein , Z Huang , S Thomas , R J Kline , C J Brabec , P Rannou , T D Anthopoulos , J R Durrant , I McCulloch . Adv Mater , 2013 . 25 ( 14 ): 2029 - 2034 . DOI:10.1002/adma.201300027http://doi.org/10.1002/adma.201300027.
S B Dkhil , M Pfannmöller , S Bals , T Koganezawa , N Yoshimoto , D Hannani , M Gaceur , C Videlot-Ackermann , O Margeat , J Ackermann . Adv Energy Mater , 2016 . 13 290 - 300 . https://hal-polytechnique.archives-ouvertes.fr/CNRS/hal-01453105v1.
F He , G Cheng , H Zhang , Y Zheng , Z Xie , B Yang , Y Ma , S Liu , J Shen . Chem Commun , 2003 . 17 2206 - 2207 . http://www.ncbi.nlm.nih.gov/pubmed/13678203.
B Fan , X Xue , X Meng , X Sun , L Huo , W Ma , Y Sun . J Mater Chem A , 2016 . 4 13930 - 13937 . DOI:10.1039/C6TA05886Hhttp://doi.org/10.1039/C6TA05886H.
F He , L Yu . J Phys Chem Lett , 2011 . 2 ( 24 ): 3102 - 3113 . DOI:10.1021/jz201479bhttp://doi.org/10.1021/jz201479b.
L Lu , T Zheng , Q Wu , A M Schneider , D Zhao , L Yu . Chem Rev , 2015 . 115 12666 - 12731 . DOI:10.1021/acs.chemrev.5b00098http://doi.org/10.1021/acs.chemrev.5b00098.
X Liu , X Li , Y Li , C Song , L Zhu , W Zhang , H Q Wang , J Fang . Adv Mater , 2016 . 28 ( 34 ): 7405 - 7412 . DOI:10.1002/adma.201601814http://doi.org/10.1002/adma.201601814.
W Ma , G Yang , K Jiang , J H Carpenter , Y Wu , X Meng , T McAfee , J Zhao , C Zhu , C Wang , H Ade , H Yan . Adv Energy Mater , 2015 . 5 ( 23 ): 1501400 DOI:10.1002/aenm.201501400http://doi.org/10.1002/aenm.201501400.
G Li , V Shrotriya , J Huang , Y Yao , T Moriarty , K Emery , Y Yang . Nat Mater , 2005 . 4 ( 11 ): 864 - 868 . DOI:10.1038/nmat1500http://doi.org/10.1038/nmat1500.
H Hu , K Jiang , G Yang , J Liu , Z Li , H Lin , Y Liu , J Zhao , J Zhang , F Huang , Y Qu , W Ma , H Yan . J Am Chem Soc , 2015 . 137 ( 44 ): 14149 - 14157 . DOI:10.1021/jacs.5b08556http://doi.org/10.1021/jacs.5b08556.
Y Lin , F Zhao , Y Wu , K Chen , Y Xia , G Li , S K K Prasad , J Zhu , L Huo , H Bin , Z G Zhang , X Guo , M Zhang , Y Sun , F Gao , Z Wei , W Ma , C Wang , J Hodgkiss , Z Bo , O Inganäs , Y Li , X Zhan . Adv Mater , 2016 . 3 1604155 .
J Yao , C Yu , Z Liu , H Luo , Y Yang , G Zhang , D Zhang . J Am Chem Soc , 2016 . 138 ( 1 ): 173 - 185 . DOI:10.1021/jacs.5b09737http://doi.org/10.1021/jacs.5b09737.
Shu Yang , Wei Zhang , Xingxing Shen , Ying Liu , Xiaoyan Du , Shan Chen , Zuo Xiao , Zhenyu Yang , Qiqun Zuo , Liming Ding . Acta Polymerica Sinica , 2012 . ( 8 ): 838 - 845 . http://www.gfzxb.org/CN/abstract/abstract13673.shtml.
杨 述 , 张 伟 , 沈 星星 , 刘 莹 , 杜 晓艳 , 陈 珊 , 肖 作 , 杨 振宇 , 左 启群 , 丁 黎明 . 高分子学报 , 2012 . ( 8 ): 838 - 845 . http://www.gfzxb.org/CN/abstract/abstract13673.shtml.
C van Pham , H Mark , H Zimmer . Synth Commun , 1986 . 16 ( 6 ): 689 - 696 . DOI:10.1080/00397918608057741http://doi.org/10.1080/00397918608057741.
M Li , K Gao , X Wan , Q Zhang , B Kan , R Xia , F Liu , X Yang , H Feng , W Ni , Y Wang , J Peng , H Zhang , Z Liang , H L Yip , X Peng , Y Cao , Y Chen . Nat Photon , 2016 . 11 ( 2 ): 85 - 90 . http://adsabs.harvard.edu/abs/2017NaPho..11...85L.
C C Chen , W H Chang , K Yoshimura , K Ohya , J You , J Gao , Z Hong , Y Yang . Adv Mater , 2014 . 26 ( 32 ): 5670 - 5677 . DOI:10.1002/adma.201402072http://doi.org/10.1002/adma.201402072.
A R b M Yusoff , D Kim , H P Kim , F K Shneider , W J da Silva , J Jang . Energy Environ Sci , 2015 . 8 ( 1 ): 303 - 316 . DOI:10.1039/C4EE03048Fhttp://doi.org/10.1039/C4EE03048F.
G Yu , J Gao , J C Hummelen , F Wudl , A J Heeger . Science , 1995 . 270 1789 - 1971 . DOI:10.1126/science.270.5243.1789http://doi.org/10.1126/science.270.5243.1789.
Z He , B Xiao , F Liu , H Wu , Y Yang , S Xiao , C Wang , T P Russell , Y Cao . Nat Photonics , 2015 . 9 ( 3 ): 174 - 179 . DOI:10.1038/nphoton.2015.6http://doi.org/10.1038/nphoton.2015.6.
Y Wang , S R Parkin , J Gierschner , M D Watson . Org Lett , 2008 . 10 ( 15 ): 3307 - 3310 . DOI:10.1021/ol8003468http://doi.org/10.1021/ol8003468.
S Albrecht , S Janietz , W Schindler , J Frisch , J Kurpiers , J Kniepert , S Inal , P Pingel , K Fostiropoulos , N Koch , D Neher . J Am Chem Soc , 2012 . 134 ( 36 ): 14932 - 14944 . DOI:10.1021/ja305039jhttp://doi.org/10.1021/ja305039j.
Y Wang , X Xin , Y Lu , T Xiao , X Xu , N Zhao , X Hu , B S Ong , S C Ng . Macromolecules , 2013 . 46 ( 24 ): 9587 - 9592 . DOI:10.1021/ma401709rhttp://doi.org/10.1021/ma401709r.
M.. T Dang , L Hirsch , G Wantz , J D Wuest . Chem Rev , 2013 . 113 ( 5 ): 3734 - 65 . DOI:10.1021/cr300005uhttp://doi.org/10.1021/cr300005u.
H Zhou , L Yang , S Xiao , S Liu , W You . Macromolecules , 2010 . 43 ( 2 ): 811 - 820 . DOI:10.1021/ma902241bhttp://doi.org/10.1021/ma902241b.
S Zhang , Y Qin , M A Uddin , B Jang , W Zhao , D Liu , H Y Woo , J Hou . Macromolecules , 2016 . 49 ( 8 ): 2993 - 3000 . DOI:10.1021/acs.macromol.6b00248http://doi.org/10.1021/acs.macromol.6b00248.
J W Jo , J W Jung , H W Wang , P Kim , T P Russell , W H Jo . Chem Mater , 2014 . 26 ( 14 ): 4214 - 4220 . DOI:10.1021/cm502229khttp://doi.org/10.1021/cm502229k.
E Wang , L Wang , L Lan , C Luo , W Zhuang , J Peng , Y Cao . Appl Phys Lett , 2008 . 92 ( 3 ): 033307 DOI:10.1063/1.2836266http://doi.org/10.1063/1.2836266.
N Allard , R d B Aïch , D Gendron , P L T Boudreault , C Tessier , S Alem , S C Tse , Y Tao , M Leclerc . Macromolecules , 2010 . 43 ( 5 ): 2328 - 2333 . DOI:10.1021/ma9025866http://doi.org/10.1021/ma9025866.
Z M Hu , H Chen , J F Qu , X W Zhong , P J Chao , M Xie , W Lu , A H Liu , L L Tian , Y A Su , W Chen , F He . ACS Energy Lett , 2017 . 2 753 - 758 . DOI:10.1021/acsenergylett.7b00092http://doi.org/10.1021/acsenergylett.7b00092.
0
浏览量
26
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构