浏览全部资源
扫码关注微信
聚合物分子工程国家重点实验室 复旦大学高分子科学系 上海 200438
E-mail: ccwang@fudan.edu.cn Chang-Chun Wang, E-mail: ccwang@fudan.edu.cn
纸质出版日期:2018-8,
收稿日期:2017-11-24,
修回日期:2017-12-19,
扫 描 看 全 文
万家勋, 孙璐艳, 汪长春. 基于金/巯基相互作用的功能分子在磁性高分子复合微球表面可控组装研究[J]. 高分子学报, 2018,0(8):1073-1080.
Jia-xun Wan, Lu-yan Sun, Chang-chun Wang. Assembly of Functional Ligands on the Surface of Magnetic Composite Microspheres Based on Gold and Thiol Interaction[J]. Acta Polymerica Sinica, 2018,0(8):1073-1080.
万家勋, 孙璐艳, 汪长春. 基于金/巯基相互作用的功能分子在磁性高分子复合微球表面可控组装研究[J]. 高分子学报, 2018,0(8):1073-1080. DOI: 10.11777/j.issn1000-3304.2018.17319.
Jia-xun Wan, Lu-yan Sun, Chang-chun Wang. Assembly of Functional Ligands on the Surface of Magnetic Composite Microspheres Based on Gold and Thiol Interaction[J]. Acta Polymerica Sinica, 2018,0(8):1073-1080. DOI: 10.11777/j.issn1000-3304.2018.17319.
建立了一种基于金纳米粒子与巯基相互作用的在磁性高分子复合微球表面高效组装功能分子的新方法. 首先制备了粒径均一的介孔磁性纳米粒子簇(MSP),利用蒸馏沉淀技术在 MSP 上包覆一层―S―S―键交联的聚甲基丙烯酸壳层(P(MAA-Cy)),并将直径10 ~ 30 nm的金纳米粒子沉积在 MSP@P(MAA-Cy)复合微球表面,从而获得MSP@P(MAA-Cy)-AuNP复合微球. 调控HAuCl
4
的投料量可以控制金纳米粒子沉积数量和尺寸. 利用金粒子和巯基之间的强相互作用,将巯基修饰的荧光分子快速可控组装在MSP@P(MAA-Cy)-AuNP微球上. 作为模型示范,实现了一次在MSP@P(MAA-Cy)-AuNP微球上快速固定单种或多种功能分子,为即时、高效、定量在功能微球(靶向药物载体等)上修饰功能分子提供了一种可选择的解决方案.
Multifunctional magnetic nano-carriers
with high saturation magnetization
high drug-loading and rapid response for external magnetic field
have been widely applied in biomedical fields
such as bioimaging
targeting therapy
diagnostics and so on. In this study
a new efficient way for superficial modification of magnetic composite microspheres based on strong interaction between gold nanoparticles and thiol compounds was explored. Using the distilled-precipitation polymerization technique
we firstly constructed magnetic composite microspheres
(MSP@P(MAA-Cy)
with acid-dissolvable magnetic supraparticles (MSP) as the core and a redox-degradable poly(methylacrylic acid-
co
-
N
N
-bis(acryloyl)cystamine) (P(MAA-Cy) as the shell
gold nanoparticles (AuNP) with the size of 10 − 30 nm were then deposited onto the surface of the MSP@P(MAA-Cy) microspheres. Through control of the reaction parameters in the distilled-precipitation polymerization
uniform polymer shell with the thickness of 30 − 40 nm was obtained. In addition
the amount and the size of the AuNP particle on the surface of MSP@P(MAA-Cy) microspheres could be adjusted by manipulating the ratio of the raw materials and reaction parameters. With an increase in the feeding amount of gold precursor
i.e
. the feeding molar ratio of HAuCl
4
to sodium citrate dihydrate (keep constant in all recipes) changed from 1:20 to 1:5
the particle size of the AuNP increased. Meanwhile
prolonging reaction time also could increase the density and particle szie of the AuNP. Due to the strong interaction between the thiol-modified fluorescent ligands and gold nanoparticles on the surface of MSP@P(MAA-Cy)-AuNP
single or dual fluorescent ligands (FA-PEG-SH and Rho-PEG-SH) could be easily assembled onto the surface of the magnetic polymer composite microspheres by one-step reaction
and the amount of the fluorescent ligands regulated by a convenient and fast way
which should give a new stratagy for onsite-assembly of functional ligands on the surface of magnetic composite microspheres without any post-treatment for personalized targeting cancer therapy.
磁性纳米粒子簇金纳米粒子复合微球荧光分子即时修饰高效组装
Magnetic supraparticlesGold nanoparticlesComposite microspheresFluorescent moleculesOnsite-modificationHigh-effective assembly
Chertok B, Moffat B A, David A E, Yu F, Bergemann C, Ross B D . Biomaterials , . 2008 . 29 487 - 496 . DOI:10.1016/j.biomaterials.2007.08.050http://doi.org/10.1016/j.biomaterials.2007.08.050 .
Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S . Adv Mater , . 2010 . 22 2729 - 2742 . DOI:10.1002/adma.201000260http://doi.org/10.1002/adma.201000260 .
Li D, Zhang Y T, Jin S, Guo J, Gao H F, Wang C C . J Mater Chem B , . 2014 . 2 5187 - 5194.
Uhlen M . Nature , . 1989 . 340 733 - 734 . DOI:10.1038/340733a0http://doi.org/10.1038/340733a0 .
Zhang Y T, Li L L, Ma W F, Zhang Y, Yu M, Guo J, Lu J, Wang C C . ACS Appl Mater Interfaces , . 2013 . 5 614 - 621 . DOI:10.1021/am3019806http://doi.org/10.1021/am3019806 .
Sonti S V, Bose A . J Colloid Interface Sci , . 1995 . 170 575 - 585 . DOI:10.1006/jcis.1995.1137http://doi.org/10.1006/jcis.1995.1137 .
Yang P, Li D, Jin S, Ding J, Guo J, Shi W B, Wang C C . Biomaterials , . 2014 . 35 2079 - 2088 . DOI:10.1016/j.biomaterials.2013.11.057http://doi.org/10.1016/j.biomaterials.2013.11.057 .
Zhu M Y, Diao G W . J Phys Chem C , . 2011 . 115 18923 - 18934 . DOI:10.1021/jp200418jhttp://doi.org/10.1021/jp200418j .
Deng H, Li X L, Peng Q, Wang X, Chen J P, Li Y D . Angew Chem Int Ed , . 2005 . 44 2782 - 2785 . DOI:10.1002/(ISSN)1521-3773http://doi.org/10.1002/(ISSN)1521-3773 .
Luo B, Xu S, Ma W F, Wang W R, Wang S L, Guo J, Yang W L, Hu J H, Wang C C . J Mater Chem , . 2010 . 20 7107 - 7113 . DOI:10.1039/c0jm00726ahttp://doi.org/10.1039/c0jm00726a .
Yu D B, Sun X Q, Zou J W, Wang Z R, Wang F, Tang K . J Phys Chem B , . 2006 . 110 21667 - 21671 . DOI:10.1021/jp0646933http://doi.org/10.1021/jp0646933 .
Li D, Zhang Y T, Li R M, Guo J, Wang C C, Tang C B . Small , . 2015 . 11 2200 - 2208 . DOI:10.1002/smll.v11.18http://doi.org/10.1002/smll.v11.18 .
Yang P, Wang F, Luo X, Zhang Y, Guo J, Shi W, Wang C C . ACS Appl Mater Interfaces , . 2014 . 6 12581 - 12587 . DOI:10.1021/am502550bhttp://doi.org/10.1021/am502550b .
Xu S, Sun C Y, Guo J, Xu K, Wang C C . J Mater Chem , . 2012 . 22 19067 - 19075 . DOI:10.1039/c2jm34877bhttp://doi.org/10.1039/c2jm34877b .
Wang H, Chen Q W, Sun Y B, He M Y . J Phys Chem C , . 2010 . 114 19660 - 19666 . DOI:10.1021/jp1081752http://doi.org/10.1021/jp1081752 .
Li D, Tang J, Wei C, Guo J, Wang S, Chaudhary D, Wang C C . Small , . 2012 . 8 2690 - 2697 . DOI:10.1002/smll.v8.17http://doi.org/10.1002/smll.v8.17 .
Gunn J, Wallen H, Veiseh O, Sun C, Fang C, Cao J H, Yee C, Zhang M Q . Small , . 2008 . 4 712 - 715 . DOI:10.1002/smll.200701103http://doi.org/10.1002/smll.200701103 .
Yigit M V, Mazumdar D, Kim H K, Lee J H, Dintsov B, Lu Y . ChemBioChem , . 2007 . 8 1675 - 1678 . DOI:10.1002/(ISSN)1439-7633http://doi.org/10.1002/(ISSN)1439-7633 .
Kohler N, Sun C, Wang J, Zhang M Q . Langmuir , . 2005 . 21 8858 - 8864 . DOI:10.1021/la0503451http://doi.org/10.1021/la0503451 .
Sun C, Sze R, Zhang M Q . J Biomed Mater Res A , . 2006 . 78 550 - 557.
Yang T, Wang Y, Ke H, Wang Q, Lv X, Wu H, Tang Y, Yang X L, Chen C Y, Zhao Y L, Chen H B . Adv Mater , . 2016 . 28 5923 - 5930 . DOI:10.1002/adma.201506119http://doi.org/10.1002/adma.201506119 .
Huang J, Guo M, Ke H, Zong C, Ren B, Liu G . Adv Mater , . 2015 . 27 5049 - 5056 . DOI:10.1002/adma.201501942http://doi.org/10.1002/adma.201501942 .
Zhang Y T, Li L L, Ma W F, Zhang Y, Yu M, Guo J, Lu H J, Wang C C . ACS Appl Mater Interfaces , . 2013 . 5 614 - 621 . DOI:10.1021/am3019806http://doi.org/10.1021/am3019806 .
Li D, Zhang Y T, Li R M, Guo J, Wang C C, Tang C B . Small , . 2015 . 11 2200 - 2208 . DOI:10.1002/smll.v11.18http://doi.org/10.1002/smll.v11.18 .
Schlossbauer A, Kecht J, Bein T . Angew Chem Int Ed , . 2009 . 48 3092 - 3095 . DOI:10.1002/anie.v48:17http://doi.org/10.1002/anie.v48:17 .
Xu S, Ma W F, You L J, Li J M, Guo J, Hu J J . Langmuir , . 2012 . 28 3271 - 3278 . DOI:10.1021/la2043137http://doi.org/10.1021/la2043137 .
Kim D H, Rozhkova E A, Rajh T, Bader S D, Novosad V . IEEE T Magn , . 2009 . 45 4821 - 4824 . DOI:10.1109/TMAG.2009.2024000http://doi.org/10.1109/TMAG.2009.2024000 .
Kalska-Szostko B, Rogowska M, Dubis A, Szymański K . Appl Surf Sci , . 2012 . 258 2783 - 2787 . DOI:10.1016/j.apsusc.2011.10.132http://doi.org/10.1016/j.apsusc.2011.10.132 .
0
浏览量
27
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构