浏览全部资源
扫码关注微信
中山大学化学学院 广州 512075
E-mail: cescsx@mail.sysu.edu.cn Shuixia Chen, E-mail: cescsx@mail.sysu.edu.cn
纸质出版日期:2018-7,
收稿日期:2017-12-18,
修回日期:2018-1-6,
扫 描 看 全 文
刘风雷, 陈水挟, 符文皓. 聚丙烯腈树脂基固态胺吸附剂的制备及其对CO2吸附性能研究[J]. 高分子学报, 2018,0(7):886-892.
Feng-lei Liu, Shui-xia Chen, Wen-hao Fu. Synthesis and CO2 Adsorption Behavior of Amine-functionalized Porous Polyacrylonitrile Resin[J]. Acta Polymerica Sinica, 2018,0(7):886-892.
刘风雷, 陈水挟, 符文皓. 聚丙烯腈树脂基固态胺吸附剂的制备及其对CO2吸附性能研究[J]. 高分子学报, 2018,0(7):886-892. DOI: 10.11777/j.issn1000-3304.2018.17332.
Feng-lei Liu, Shui-xia Chen, Wen-hao Fu. Synthesis and CO2 Adsorption Behavior of Amine-functionalized Porous Polyacrylonitrile Resin[J]. Acta Polymerica Sinica, 2018,0(7):886-892. DOI: 10.11777/j.issn1000-3304.2018.17332.
以丙烯腈(AN)为单体,二乙烯苯(DVB)为交联剂,采用悬浮聚合法制备了多孔聚丙烯腈聚合物(PAN),进一步通过胺化反应制备了含有较高密度胺基的固态胺吸附材料. 利用N
2
吸附-脱附等温线、扫描电子显微镜(SEM)、热重分析(TG)等方法表征了吸附材料的结构和形貌. 研究了有机胺化试剂类型对所制备的材料结构的影响,以及吸附温度、湿度等对其CO
2
吸附性能的影响. 研究结果表明,当吸附温度为25 °C、流速为30 mL/min、CO
2
浓度为10%、有机胺为四乙烯五胺(TEPA)时,固态胺吸附材料PAN-TEPA对CO
2
的吸附量可达1.87 mmol/g. 水的存在能显著提高PAN-TEPA的吸附量,饱和水蒸气下,其对CO
2
的平衡吸附量为2.97 mmol/g. 动力学研究发现,Avrami模型能很好地拟合PAN-TEPA在不同温度下的吸附过程,揭示PAN-TEPA对CO
2
的吸附过程是物理吸附和化学吸附共同作用的效果. 经过10次循环再生吸附后,PAN-TEPA的吸附量仍可以达到初始吸附量的98%. 上述研究结果表明,PAN-TEPA对CO
2
具有良好的吸附性能和稳定的再生性能,其在CO
2
的捕集方面具有重要的应用前景.
The objective of this study was to develop a novel solid amine adsorbent using porous polyacrylonitrile resin instead of mesoporous silica as support for CO
2
adsorption from flue gas. This solid amine adsorbent was prepared by a suspension polymerization of divinylbenzene (DVB) with acrylonitrile (AN)
followed by aminating with tetraethylenepentamine (TEPA). Scanning electronic microscope
nitrogen adsorption-desorption isotherms at 77 K
and thermogravimetry (TG) were employed to characterize the surface structure
porosity
and thermal stability of the solid amine adsorbent. Factors that could determine the CO
2
adsorption performance of the solid amine adsorbent
such as amine species
adsorption temperature and moisture
were investigated. The experimental results showed that the maximum adsorption capacity of CO
2
(1.87 mmol/g) wasachieved at 25 °C with CO
2
concentration of 10 vol%
the flow rate of 30 mL/min and TEPA as the organic amine. The solid amine adsorbent modified with TEPA (PAN-TEPA)
a longer chain amine among all amines used
showed superior amine efficiency and CO
2
adsorption capacity to the other two amine species with shorter chains. CO
2
adsorption capacity decreased obviously as the adsorption temperature increased
because the reaction between CO
2
and amine groups was an exothermic reaction. The presence of water could significantly improve CO
2
amount adsorbed on the adsorbent by promoting the chemical adsorption of CO
2
on PAN-TEPA. A higher equilibrium adsorption capacity (2.97 mmol/g) was achieved in the presence of moisture. Meanwhile
the kinetics study found that Avrami kinetic model was more fitted to accurately describe CO
2
adsorption than the Pseudo-first and Pseudo-second order models
indicating that both physical adsorption and chemical adsorption were involved in CO
2
adsorption. Moreover
this solid amine adsorbent could be regenerated with nitrogen stream at 75 °C
and it kept stable CO
2
adsorption capacity after ten cycles of adsorption-desorption. All these features indicated that the amine-functionalized porous polyacrylonitrile resin has a high potential for CO
2
capture and separation from flue gas.
CO2吸附多孔性聚合物动力学
CO2AdsorptionPorous polymerKinetics
Hanak D P, Anthony E J, Manovic V . Energ Environ Sci , . 2015 . 8 2199 - 2249.
Almaz S J, Li Y, Carter K, James M T . Nat Energy , . 2017 . 2 932 - 938.
Zhao C, Guo Y, Li W, Bu C, Wang X, Lu P . Chem Eng J , . 2017 . 312 50 - 58.
Rochelle G T . Science , . 2009 . 325 1652 - 1654.
Li W, Wu J, Lee S S, Fortner J D . Chem Eng J , . 2017 . 313 1160 - 1167.
Yan X, Zhang L, Zhang Y, Yang G, Yan Z . Ind Eng Chem Res , . 2011 . 50 3220 - 3226.
Hanauer D A, Mei Q, Malin B, Zheng K . Nature , . 2013 . 495 80 - 84.
Datta S J, Khumnoon C, Lee Z H, Moo, W K, Docao S, Nguyen T H, Hwang I C, Moon D, Oleynikov P, Terasaki O, Yoon K B . Science , . 2015 . 350 302 - 306.
Kishor R, Ghoshal A K . Energy Fuel , . 2016 . 30 9635 - 9644.
Aliakbar H G, Yang Y, Sayari A . Energy Fuel , . 2011 . 25 4206 - 4210.
Xu X, Song C, Andrésen J M, Miller B G, Scaroni A W . Micropor Mesopor Mat , . 2003 . 62 29 - 45.
Wang D, Ma X, Sentorunshalaby C, Song C S . Ind Eng Chem Res , . 2012 . 51 3048 - 3057.
Martínez F, Sanz R, Orcajo G, Briones D, Yángüez V . Chem Eng Sci , . 2016 . 142 55 - 61.
Ceciliaa J A, García E V, Sanchoc C G, Saboya R M A, Azevedo D C S, Castellóna E R . Int I Greenhouse Gas Control , . 2016 . 52 344 - 356.
Zhao Y, Liu X, Han Y . RSC Adv , . 2015 . 5 30310 - 30330.
Xian S, Feng X, Chen M, Wu Y, Xia Q, Wang H, Li Z . Chem Eng J , . 2015 . 280 363 - 369.
Qi G, Wang Y, EstevezL, Duan X, Anako N, Park AH A . Energ Environ Sci , . 2011 . 4 444 - 452.
Han J, Du Z, Zou W, Li H, Zhang C . Ind Eng Chem Res , . 2015 . 54 7623 - 7631.
Liu F, Huang K, Yoo C J, Okonkwo C, Tao D J, Jones C W, Dai S . Chem Eng J , . 2017 . 314 466 - 476.
Liu F, Chen S, Gao Y, Xie Y . J Porous Mater , . 2017 . 24 1335 - 1342.
Chen Z, Deng S, Wei H, Wang B, Huang J, Yu G . ACS Appl Mater Interfaces , . 2013 . 5 6937 - 6945.
Liu F, Chen S, Gao Y . J Colloid Interface Sci , . 2017 . 506 236 - 244.
Luo S, Chen S, Chen S Y, Zhuang L, Ma N, Xu T . J Environ Manage , . 2016 . 16 142 - 148.
Wang D, Ma X, Cigdem S S, Song C . Ind Eng Chem Res , . 2012 . 51 3048 - 3057.
Wang X, ChenL, Guo Q . Chem Eng J , . 2014 . 260 573 - 581.
Wang X, Guo Q, Kong T . Chem Eng J , . 2015 . 273 472 - 480.
0
浏览量
26
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构