浏览全部资源
扫码关注微信
四川大学高分子科学与工程学院 高分子材料工程国家重点实验室 成都 610065
E-mail: qiangfu@scu.edu.cn Qiang Fu, E-mail: qiangfu@scu.edu.cn
纸质出版日期:2018-9,
收稿日期:2018-1-4,
修回日期:2018-2-26,
扫 描 看 全 文
樊茂, 傅思睿, 郭硕, 陈枫, 傅强. 通过高速挤出制备高性能PBS/PETG共混材料[J]. 高分子学报, 2018,0(9):1244-1252.
Mao Fan, Si-rui Fu, Shuo Guo, Feng Chen, Qiang Fu. Fabrication of High-performance PBS/PETG Blends by High-speed Extrusion[J]. Acta Polymerica Sinica, 2018,0(9):1244-1252.
樊茂, 傅思睿, 郭硕, 陈枫, 傅强. 通过高速挤出制备高性能PBS/PETG共混材料[J]. 高分子学报, 2018,0(9):1244-1252. DOI: 10.11777/j.issn1000-3304.2018.18005.
Mao Fan, Si-rui Fu, Shuo Guo, Feng Chen, Qiang Fu. Fabrication of High-performance PBS/PETG Blends by High-speed Extrusion[J]. Acta Polymerica Sinica, 2018,0(9):1244-1252. DOI: 10.11777/j.issn1000-3304.2018.18005.
通过高速挤出技术制备了高性能聚丁二酸丁二醇(PBS)/聚(乙二醇-
co
-环己烷-1
4-二甲醇对苯二酸酯) (PETG)共混材料,研究了不同PETG含量和不同螺杆转速对共混材料相区尺寸和性能的影响. 研究发现PETG质量分数存在一个最佳用量:即为20%时,随着转速的提高PETG分散相相尺寸从最初的2.27 μm逐渐降低到0.89 μm. 与此同时,共混材料的屈服强度从最初的26.2 MPa增加到33.4 MPa,提高了27.5%. 断裂伸长率也从最初的13.3%提高到133.3%,实现了从脆性断裂到韧性断裂的转变. 而当PETG的质量分数为10%或30%时,提高转速对PETG分散相的相尺寸减少不多,对共混材料力学性能有一定提升. 最佳用量的存在表明高速挤出引起的相区尺寸减少是一个破碎与聚并动态平衡的过程. 将不同的组成和加工的转速下获得的共混物的屈服强度与分散尺寸作图,发现它们成近似的反比关系,进一步证明PETG减小分散相相尺寸对共混材料性能提升的重要性.
Blends based on poly(butylene succinate) (PBS) and poly(ethylene glycol-
co
-cyclohexane-1
4-dimethanolterephthalate) (PETG) were successfully fabricated by a special twin screw extruder. Effects of PETG content and rotating speed on the dispersed size and mechanical properties of the PBS/PETG blends were investigated. The average diameter of PETG phase showed a downwards trend from 2.27 μm to 0.89 μm with increasing rotating speed from 150 r/min to 900 r/min for a blend with 20 wt% of PETG. Meanwhile
the yield strength of the blend was raised from 26.2 MPa to 33.4 MPa. In addition
the elongation at break was also promoted from 13.3% to 133.3%
which indicated a transformation from brittle fracture into ductile fracture as accomplished by high speed extrusion. However
the decrease of the dispersed PETG size was very limited by increasing rotating speed for the blends containing 10 wt% or 30 wt% of PETG. As a result
the yield strength and the elongation at break showed only limited increase in the obtained blends. The relationship between the size of the dispersed phase and mechanical properties of the PBS/PETG blends prepared with different components and at different rotating speeds were analyzed comprehensively. A nearly linear relationship was found between the yield strength and the diameter of the dispersed phase
disregarding the composition and rotating speed. This demonstrated again the importance of the size of the dispersed phase in determining the property of PBS/PETG blends. GPC and DSC results indicated no obvious change in molecular weight and crystallinity of PBS by increasing rotating speed
and the observed property change of the blends was well explained by the change of dispersed phase size induced by high speed rotating. It should be noted that the high speed rotating induced change in the size of the dispersed phase was thermodynamically unstable. The stability of the blends will be investigated in our future work.
PBS/PETG共混材料高速挤出分散相相尺寸力学性能
PBS/PETG blendsHigh-speed extrusionDispersion phase sizeMechanical property
Sun Yuanbi(孙元碧), Xu Jun(徐军), Xu Yongxiang(徐永祥), Guo Baohua(郭宝华). Acta Polymerica Sinica(高分子学报), 2006, (6): 745-749
Luo Faliang(罗发亮), Zhang Xiuqin(张秀芹), Gan Zhihua(甘志华), Ji Junhui(季君晖), Wang Dujin(王笃金). Acta Polymerica Sinica(高分子学报), 2011, (2): 132-138
Ji Deyun(季得运), Liu Zhengying(刘正英), Lan Xiaorong(兰小蓉), Wu Feng(吴枫), Hua Sun(华笋), Yang Mingbo(杨鸣波). Acta Polymerica Sinica(高分子学报), 2012, (7): 694-697
Zeng Jianbing(曾建兵), Li Yidong(李以东), Li Wenda(李闻达), Zhu Qunying(朱群英), Xiong Zhu(熊竹), Yang Keke(杨科珂), Wang Yuzhong(王玉忠). Acta Polymerica Sinica(高分子学报), 2009, (10): 1018-1024
Sang L, Zhao M, Liang Q, Wei Z . Polymers , 2017 . 9 ( 8 ): 351 - 364.
Fortunati E, Puglia D, Iannoni A, Terenzi A, Kenny J M, Torre L . Materials , 2017 . 10 ( 7 ): 809 - 824.
Liu G C, Zhang W Q, Zhou S L, Wang X L, Wang Y Z . RSC Adv , 2016 . 6 ( 73 ): 68942 - 68951.
Feng Y H, Li Y J, Xu BP, Zhang D W, Qu J P, He H Z . Compos Part B , 2013 . 44 ( 1 ): 193 - 199.
Zhou W H, Ye S W, Chen Y W, Huang Y L, Yuan S S . J Macromol Sci B , 2012 . 51 ( 12 ): 2361 - 2376.
PivsaArt W, Fujii K, Nomura K, Aso Y, Ohara H, Yamane H . J. Polym Res , 2016 . 23 ( 8 ): 144 - 151.
Voznyak Y, Morawiec J, Galeski A . Compos Part A , 2016 . 90 218 - 224.
Zhou M, Fan M, Zhao Y S, Jin T X, Fu Q . Carbohydr Polym , 2016 . 140 383 - 392.
Zhou M, Xu S M, Li Y H, He C, Jin T X, Wang K, Deng H, Zhang Q, Chen F, Fu Q . Polymer , 2014 . 55 ( 13 ): 3045 - 3053.
Lv Z Y, Zhang M C, Zhang Y, Guo B H, Xu J . Chinese J Polym Sci , 2017 . 35 ( 12 ): 1552 - 1560.
Jiang J, Zhuravlev E, Hu W B, Schick C, Zhou D S . Chinese J Polym Sci , 2017 . 35 ( 8 ): 1009 - 1019.
Chen Xianghui(陈祥辉), Huang Hanxiong(黄汉雄). Acta Polymerica Sinica(高分子学报), 2017, (8): 1331-1338
Liu Dan(刘丹), Qi Zhiguo(齐治国), Xu Jun(徐军), Guo Baohua(郭宝华). Plastics(塑料), 2014, 43(4): 24-28
Shibata M, Inoue Y, Miyoshi M . Polymer , 2006 . 47 ( 10 ): 3557 - 3564.
Wu J H, Yen M S, Kuo M C, Tsai Y H, Leu M T. J Appl Polym Sci, 2015, 132(27): 42207
Martinez A B, Leon N, Arencon D, Rodriguez J, Salazar A . Polym Test , 2013 . 32 ( 7 ): 1244 - 1252.
Chen T T, Zhang W K, Zhang J . Polym. Degrad Stab , 2015 . 120 232 - 243.
Jiang W R, Bao R Y, Yang W, Liu Z Y, Xie B H, Yang M B . Mater Design , 2014 . 59 524 - 531.
Wang X D, Liu W, Zhou H F, Liu B G, Li H Q, Du Z J, Zhang C . Polymer , 2013 . 54 ( 21 ): 5839 - 5851.
Louizi M, Massardier V, Cassagnau P . Macromol Mater Eng , 2014 . 299 ( 6 ): 674 - 688.
Li Y J, Shimizu H . Macromol Biosci , 2007 . 7 ( 7 ): 921 - 928.
Li Y, Shimizu H . Polym Eng Sci , 2011 . 51 ( 7 ): 1437 - 1445.
Teyssandier F, Cassagnau P, Gérard J F, Mignard N, Mélis F . Mater Chem Phys , 2012 . 133 ( 2-3 ): 913 - 923.
0
浏览量
19
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构