浏览全部资源
扫码关注微信
台湾中山大学材料与光电科学学系 高雄 80424
E-mail: kuosw@faculty.nsysu.edu.tw Shiao-Wei Kuo, E-mail: kuosw@faculty.nsysu.edu.tw
纸质出版日期:2018-8,
收稿日期:2018-1-16,
修回日期:2018-2-23,
扫 描 看 全 文
林瑞崇, 郭绍伟. 调控氢键作用力在多组分嵌段共聚物共混体系中的自组装结构[J]. 高分子学报, 2018,0(8):1016-1032.
Ruey-Chorng Lin, Shiao-Wei Kuo. Hydrogen Bonding Interactions Mediated Self-assembly Structures of Multicomponent Block Copolymer Mixtures[J]. Acta Polymerica Sinica, 2018,0(8):1016-1032.
林瑞崇, 郭绍伟. 调控氢键作用力在多组分嵌段共聚物共混体系中的自组装结构[J]. 高分子学报, 2018,0(8):1016-1032. DOI: 10.11777/j.issn1000-3304.2018.18020.
Ruey-Chorng Lin, Shiao-Wei Kuo. Hydrogen Bonding Interactions Mediated Self-assembly Structures of Multicomponent Block Copolymer Mixtures[J]. Acta Polymerica Sinica, 2018,0(8):1016-1032. DOI: 10.11777/j.issn1000-3304.2018.18020.
调控嵌段共聚物共混体系的氢键作用力可应用在光学、电性及生物医用领域,因此吸引了高分子科学家广泛的研究兴趣,它提供了制备新型高分子材料(包含可调性及响应性的功能)的方法. 在此篇综述中,我们整理了各种氢键作用力调控嵌段共聚物共混体系(如嵌段共聚物/低分子量化合物、嵌段共聚物/均聚物及嵌段共聚物/嵌段共聚物混合体系)在固态及液态的自组装行为.
Self-assembly from block copolymers is a bottom-up process
a relatively inexpensive and simple approach for the preparation of large-scale nano-patterns. This self-assembly from diblock copolymers is driven by the combination of repulsive and attractive interactions due to the covalent bond linkage. The intrinsic immiscibility or incompatibility among the A or B block segments possesses the repulsive force and then confines into nanoscaled domain through the microphase separation because of the attractive force from the covalent bond linkage of A and B block segments. In general
these diblock copolymers can form different well-defined nanostructures in the bulk state including alternative lamellae
bicontinuous double gyroid
hexagonally packed cylinder
and body-centered cubic (BCC) structures
depending on the relative volume fractions of the block copolymer segments
interaction parameters (
χ
)
and degrees of polymerization (
N
). However
the preparation of block copolymers with controlled volume fraction would be complicated and time-consuming; thus the diblock copolymers (A-
b
-B) blending with their homopolymer or low-molecular-weight compound would be an easier method for preparing different self-assembled nanostructures. Therefore
self-assembly nanostructures of block copolymer mixtures through mediated hydrogen bonding interactions have attracted much interest in polymer science because of their potential applications in photonic
electronic and biomedical fields
which could offer the unique possibility to create new functional polymeric materials with tunable and responsive behaviors. In this review article
we describe the self-assembly nanostructure of the block copolymer mixtures including block copolymer/low molecular weight compound
block copolymer/homopolymer
and block copolymer/block copolymer mixtures in bulk and solution states by mediated hydrogen bonding strength. Mediated strength of hydrogen bonding in block copolymer blending with homopolymer or block copolymer could provide order-order phase transition from typical lamellar
double gyroid
cylinder
and BCC spherical structure
even various hierarchical self-assembly structures such as three-phase lamellae
core-shell cylinder
and cylinder in lamellae structures in bulk state. Furthermore
it also possesses the different micellar structures of block copolymer mixtures such as spheres
rods
vesicles
and even large compound micelles in solution state.
氢键作用力嵌段共聚物共混体系自组装结构
Hydrogen bondingBlock copolymerPolymer blendSelf-assembly structures
Kuo S W. Hydrogen Bonding in Polymeric Materials. Weinheim: Wiely-VCH, Germany, 2018
Ruokolainen J, ten-Brinke G, Ikkala O . Macromolecules , . 1996 . 29 3409 - 3415.
Ruokolainen J, Makinen R, Torkkeli M, Makela T, Serimaa R, ten-Brinke G, Ikkala O . Science , . 1998 . 280 557 - 560.
Ikkala O, ten-Brinke G . Chem Commun , . 2004 . 2131 - 2137.
ten-Brinke G, Ruokolaine J, Ikkala O . Adv Polym Sci , . 2007 . 207 113 - 178.
Tanaka H, Hasegawa H, Hashimoto T . Macromolecules , . 1991 . 24 240 - 251.
Han Y K, Pearce E M, Kwei T K . Macromolecules , . 2000 . 33 1321 - 1329.
Jiang M, Xie H . Prog Polym Sci , . 1991 . 16 977 - 1026.
Huang Y Y, Chen H L, Hashimoto T . Macromolecules , . 2003 . 36 764 - 770.
Huang Y Y, Hsu J Y, Chen H L, Hashimoto T . Macromolecules , . 2007 . 40 3700 - 3707.
Zhao J Q, Pearce E M, Kwei T K . Macromolecules , . 1997 . 30 7119 - 7126.
Kosoneen H, Ruokolainen J, Nyholm P, Ikkala O . Polymer , . 2001 . 42 9481 - 9486.
Dobrosielska K, Wakao S, Takano A, Matsushita Y . Macromolecules , . 2008 . 41 7695 - 7698.
Dobrosielska K, Wakao S, Suzuki J, Noda K, Takano A, Matsushita Y . Macromolecules , . 2009 . 42 7098 - 7102.
Chen S C, Kuo S W, Jeng U S, Su C J, Chang F C . Macromolecules , . 2010 . 43 1083 - 1092.
Dehghan A, Shi A C . Macromolecules , . 2013 . 46 5796 - 5805.
Coleman M M, Painter P C. Miscible Polymer Blends: Background and Guide for Calculations and Design. Lancaster: DEStech Publication Inc., PA, 2006
Tsai S C, Lin Y C, Lin E L, Chiang Y W, Kuo S W . Polym Chem , . 2016 . 7 2395 - 2409.
Hameed N, Guo Q . Polymer , . 2008 . 49 5268 - 5275.
Hameed N, Liu J, Guo Q . Macromolecules , . 2008 . 41 7596 - 7605.
Hameed N, Guo Q . Polymer , . 2008 . 49 922 - 933.
Chen W C, Kuo S W, Lu C H, Jeng U S, Chang F C . Macromolecules , . 2009 . 42 3580 - 3590.
Salim N V, Hanley T, Guo Q . Macromolecules , . 2010 . 43 7695 - 7704.
Li J G, Lin Y D, Kuo S W . Macromolecules , . 2011 . 44 9295 - 9309.
Salim N V, Hameed N, Guo Q . J Polym Sci, Part B: Polym Phys , . 2009 . 47 1894 - 1905.
Hameed N, Salim N V, Guo Q . J Chem Phys , . 2009 . 131 214905 .
Lee H F, Kuo S W, Huang C F, Lu J S, Chan S C, Wang C F, Chang F C . Macromolecules , . 2006 . 39 5458 - 5465.
Chen W C, Kuo S W, Jeng U S, Chang F C . Macromolecules , . 2008 . 41 1401 - 1410.
Zhou J, Shi A C . J Chem Phys , . 2009 . 130 234904 .
Lin I, Kuo S W, Chang F C . Polymer , . 2009 . 50 5276 - 5287.
Han S H, Pryamitsyn V, Bae D, Kwak J, Ganesan V, Kim J K . ACS Nano , . 2012 . 6 7966 - 7972.
Kwak J, Han S H, Moon H C, Kim J K . Macromolecules , . 2015 . 48 6347 - 6352.
Kuo S W . Polym Inter , . 2009 . 58 455 - 464.
Chen W C, Kuo S W, Chang F C . Polymer , . 2010 . 51 4176 - 4184.
Jiang S, Gopfert A, Abetz V . Macromolecules , . 2003 . 36 6171 - 6177.
Asari T, Matsuo S, Takano A, Matsushita Y . Macromolecules , . 2005 . 38 8811 - 8815.
Asari T, Arai S, Takano A, Matsushita Y . Macromolecules , . 2006 . 39 2232 - 2237.
Matsushita Y . Macromolecules , . 2007 . 40 771 - 776.
Miyase H, Asai Y, Takano A, Matsushita Y . Macromolecules , . 2017 . 50 979 - 986.
Tang C, Lennon E M, Fredrickson G H, Kramer E J, Hawker C J . Science , . 2008 . 322 429 - 432.
Mai Y, Eisenberg A . Chem Soc Rev , . 2012 . 41 5969 - 5985.
Peng H, Chen D, Jiang M . Langmuir , . 2003 . 19 10989 - 10992.
Zhu J, Yu H, Jiang W . Macromolecules , . 2005 . 38 7492 - 7501.
Chen S C, Kuo S W, Chang F C . Langmuir , . 2011 . 27 10197 - 10205.
Zhang Y, Xiang M, Jiang M, Wu C . Macromolecules , . 1997 . 30 2035 - 2041.
Gao W P, Bai Y, Chen E Q, Li Z C, Han B Y, Yang W T, Zhou Q F . Macromolecules , . 2006 . 39 4894 - 4898.
Zhang W, Shi L, Gao L, An Y, Li G, Wu K, Liu Z . Macromolecules , . 2005 . 38 899 - 903.
Matejicek P, Uchman M, Lokajova J, Stepanek M, Prochazka K, Spirkova M . J Phys Chem B , . 2007 . 111 8394 - 8401.
Lee S C, Kim K J, Jeong Y K, Chang J H, Choi J . Macromolecules , . 2005 . 38 9291 - 9297.
Lefevre N, Fustin C A, Gohy J F . Macromol Rapid Commun , . 2009 . 30 1871 - 1888.
Talingting M R, Munk P, Webber S E, Tuzar Z . Macromolecules , . 1999 . 32 1593 - 1601.
Xie D, Xu K, Bai R, Zhang G . J Phys Chem B , . 2007 . 111 778 - 781.
Huang W, Luo C, Li B, Han Y . Macromolecules , . 2006 . 39 8075 - 8082.
Kuo S W, Chung Y C, Jeong K U, Chang F C . J Phys Chem C , . 2008 . 112 16470 - 16477.
Gao Y, Wei Y, Li B, Han Y . Polymer , . 2008 . 49 2354 - 2361.
Li G, Shi L, Ma R, An Y, Haung N . Angew Chem Int Ed , . 2006 . 118 5081 - 5084.
Xiong D, He Z, An Y, Li Z, Wang H, Chen X, Shi L . Polymer , . 2008 . 49 2548 - 2522.
Xiong D, Shi L, Jiang X, An Y, Chen X, Lu J . Macromol Rapid Commun , . 2007 . 28 194 - 199.
Kuo S W, Tung P H, Lai C L, Jeong K U, Chang F C . Macromol Rapid Commun , . 2008 . 29 229 - 233.
Kuo S W, Tung P H, Chang F C . Eur Polym J , . 2009 . 45 1924 - 1935.
Hsu C H, Kuo S W, Chen J K, Ko F H, Liao C S, Chang F C . Langmuir , . 2008 . 24 7727 - 7734.
Wu Y C, Kuo S W . Polym Chem , . 2012 . 3 3100 - 3111.
Wu Y R, Wu Y C, Kuo S W . Macromol Chem Phys , . 2013 . 214 1469 - 1503.
Wu Y C, Bastakoti P P, Pramanik P, Yamauchi Y, Kuo S W . Polym Chem , . 2015 . 6 5110 - 5124.
Huang C W, Ji W Y, Kuo S W . Macromolecules , . 2017 . 50 7091 - 7101.
0
浏览量
67
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构