浏览全部资源
扫码关注微信
1.伊犁师范学院物理科学与技术学院 新疆凝聚态相变与微结构实验室 伊宁 835000
2.南京大学化学化工学院 配位化学国家重点实验室 南京 210023
E-mail: juliejing@163.com Jing Jiang, E-mail: juliejing@163.com
E-mail: dzhou@nju.edu.cn Dong-shan Zhou, E-mail: dzhou@nju.edu.cn
纸质出版日期:2018-9,
收稿日期:2017-1-21,
修回日期:2018-3-13,
扫 描 看 全 文
杨榕, 李红梅, 姜菁, 周东山. 聚氧化乙烯受限态下等温结晶动力学的高速扫描量热研究[J]. 高分子学报, 2018,0(9):1228-1235.
Rong Yang, Hong-mei Li, Jing Jiang, Dong-shan Zhou. Study on Isothermal Crystallization Kinetics of Poly(ethylene oxide) Droplets by Fast Scanning Calorimetry[J]. Acta Polymerica Sinica, 2018,0(9):1228-1235.
杨榕, 李红梅, 姜菁, 周东山. 聚氧化乙烯受限态下等温结晶动力学的高速扫描量热研究[J]. 高分子学报, 2018,0(9):1228-1235. DOI: 10.11777/j.issn1000-3304.2018.18024.
Rong Yang, Hong-mei Li, Jing Jiang, Dong-shan Zhou. Study on Isothermal Crystallization Kinetics of Poly(ethylene oxide) Droplets by Fast Scanning Calorimetry[J]. Acta Polymerica Sinica, 2018,0(9):1228-1235. DOI: 10.11777/j.issn1000-3304.2018.18024.
利用高速扫描量热仪(FSC)研究聚氧化乙烯(PEO)样品在三维受限小液滴中的等温结晶过程,获得了样品从玻璃化转变温度至熔点温度整个区间的等温结晶动力学. PEO本体样品由于异相成核作用明显,以5 × 10
4
K/s的速率降温依然无法抑制其在降温过程中的成核过程,而通过PEO薄膜去润湿获得的小液滴则可在1 × 10
4
K/s升降温速率下获得完全无序态的样品. 对本体PEO和去润湿得到的PEO液滴样品进行不同温度的等温结晶实验,通过对比PEO受限前后等温结晶动力学的变化发现,相对于PEO本体样品,液滴样品的结晶速率在整个等温温度区间均有所下降. 在高温异相成核控制区,当PEO样品受限成为多个比本体样品直径小10倍左右的小液滴后,每个液滴内异相成核位点数减少或缺失,从而导致整体总结晶速率降低;而低温均相成核控制区,由于PEO样品的独特性,异相成核对其成核过程仍然有一定的影响,受限成液滴后此影响消失,同时链段扩散晶体生长过程受到尺寸效应的限制,也在一定程度上影响了PEO的总结晶速率.
The isothermal crystallization kinetics of poly(ethylene oxide) (PEO) droplets was studied by fast scanning calorimetry (FSC) at a scanning rate up to 10000 K/s over a wide temperature range from its glass transition temperature to its melting temperature
and compared with that of PEO bulk sample. It was observed that the nucleation in PEO bulk sample during cooling is unavoidable even at a scanning rate of up to 50000 K/s because of numerous heterogeneity and the observation of an obvious cold crystallization peak in the subsequent heating curves. While the critical cooling rate is much slower when the sample was prepared by film dewetting and dispersed to several droplets smaller than 2 μm in diameter
and a fully amorphous sample could be obtained at a scanning rate of 10000 K/s. Isothermal crystallization of PEO bulk and that of droplets were studied in the time range from 10
−2
s to 10
3
s at varied temperatures from 210 K to 310 K. The half crystallization time at each annealing temperature was calculated by fitting the enthalpy-time curve with a modified Avrami equation. It was found that the total crystallization rate of PEO droplets was systematically decreased by one magnitude in the whole temperature region. When the sample was dispersed into droplets of the size of several microns
the number of heterogeneity in each droplet was much less than that in the bulk or even heterogeneity-free in some droplets
with the average crystallization rate slowing down
especially in the low supercooling region
where heterogeneous nucleation is supposed to be dominant. The slowing down of crystallization rate was also observed at higher supercooling near
T
g
where the homogeneous nucleation is considered to dominate the crystallization rate. Because of a slower homogeneous nucleation rate of PEO
the droplets sample with less heterogeneity mainly nucleated from homogeneous nucleation with a slower crystallization rate comparing to the unavoidable heterogeneous nucleation in bulk sample. The confinement of the droplet size may hinder the long-range diffusion of PEO chains and restricted the growth dimension under confinement
which could also be a reason for which a decrease in total crystallization rate of PEO droplets sample was observed.
聚氧化乙烯受限结晶高速扫描量热等温结晶
PEOConfined crystallizationFast scanning calorimetryIsothermal crystallization
Zhang Xinghua(张兴华), Yan Dadong(严大东) . 高分子学报 , 2014 . ( 8 ): 1041 - 1047.
Toda A, Androsch R, Schick C . Polymer , 2016 . 91 239 - 263.
Michell R M, Müller A J . Prog Polym Sci , 2016 . 5455 183 - 213.
Vayer M, Vital A . Eur Polym J , 2017 . 132 - 139.
Ono T . Polymer , 2017 . 116 523 - 533.
Lee S . Polymer , 2016 . 116 540 - 548.
Michell R M, Lorenzo A T, Müller A J, Lin M C, Blaszczyk-Lezak I, Martín J, Mijangos C . Macromolecules , 2012 . 45 1517 - 1528.
Suzuki Y, Duran H, Steinhart M, Butt H J, Floudas G . Soft Matter , 2013 . 9 2621 - 2628.
Lin M C, Nandan B, Chen H L . Soft Matter , 2012 . 8 7306 - 7322.
Martín-Fabiani I, García-Gutiérrez M C, Rueda D R, Linares A, Hernández J J, Ezquerra T A, Reynolds M . ACS Appl Mater Interfaces , 2013 . 5 5324 - 5329.
Michell R M, Blaszczyk-Lezak I, Mijangos C, Müller A J . Macromol Symp , 2014 . 337 109 - 115.
Sanandaji N, Oka A, Haviland D B, Tholén E A, Hedenqvist M S, Gedde U W. . Eur Polym , 2013 . 49 203 - 208.
Carvalho J L, Dalnoki-Veress S K . Eur Phys J , 2011 . 34 1 - 6.
Massa M V, Carvalho J L, Dalnoki-Veress K . Eur Phys J , 2003 . 12 111 - 117.
Zhang G, Lee P C, Jenkins S, Dooley J . Baer E Polymer , 2014 . 55 663 - 672.
Carr J M, Langhe D S, Ponting M T, Hiltner A, Baer E . J Mater Res , 2012 . 27 1326 - 50.
Huang C, Jiao L, Zeng J, Zhang J, Yang K, Wang Y . Phys Chem B , 2013 . 117 10665 - 10676.
Zeng J, Zhu Q, Lu X, He Y, Wang Y . Polym Chem , 2012 . 3 399 - 408.
Fu J, Wei Y, Xue L, Luan B, Pan C, Li B . Polymer , 2009 . 50 1588 - 1595.
van Riemsdyk A D . Ann Chim Phys , 1880 . 20 66 - 79.
Price F P. Nucleation in Polymer Crystallization. New York: Marcel Dekker, 1969. 405-488
Vonnegut B . J Colloid Sci , 1948 . 3 563 - 569.
Turnbull D, Cech R . J Appl Phys , 1950 . 21 804 - 810.
Pound G M, La Mer V K . J Am Chem Soc , 1952 . 74 2323 - 2332.
Turnbull D, Cormia R . J Chem Phys , 1952 . 20 411 - 424.
Turnbull D, Cormia R . J Chem Phys , 1961 . 34 820 - 831.
Cormia R L, Price F P, Turnbull D . J Chem Phys , 1962 . 37 1333 - 1340.
Burns J, Turnbull D . J Appl Phys , 1966 . 37 4021 - 4026.
Koutsky J A, Walton A G, Baer E . J Appl Phys , 1967 . 38 1832 - 1839.
Gornick F, Ross G, Frolen L . J Polym Sci, Polym Part C Symp , 1967 . 18 79 - 91.
Su Y, Liu G, Xie B, Fu D, Wang D . Acc Chem Res , 2014 . 47 192 - 201.
Kailas L, Vasilev C, Audinot J N, Migeon H N, Hobbs J K . Macromolecules , 2007 . 40 7223 - 7230.
Carvalho J, Dalnoki-Veress K . Eur Phys J E , 2011 . 34 1 - 6.
Massa M V, Dalnoki-Veress K . Phys Rev Lett , 2004 . 92 1 - 4.
Massa M V, Lee M, Dalnoki-Veress S K . J Polym Sci, Part B: Polym Phys , 2005 . 43 3438 - 3443.
Massa M V, Carvalho J, Dalnoki-Veress K . Phys Rev Lett , 2006 . 97 1 - 4.
Carvalho J, Massa M V, Dalnoki-Veress K . J Polym Sci, Part B: Polym Phys , 2006 . 44 3448 - 3452.
Carvalho J, Dalnoki-Veress K . Phys Rev Lett , 2010 . 105 1 - 4.
Adamovsky S A, Minakov A A, Schick C . Thermochim Acta , 2003 . 403 ( 1 ): 55 - 63.
Adamovsky S, Schick C . Thermochim Acta , 2004 . 415 ( 2 ): 1 - 7.
de Santis F, Adamovsky S, Titomanlio G, Schick C . Macromolecules , 2006 . 39 ( 7 ): 2562 - 2567.
de Santis F, Adamovsky S, Titomanlio G, Schick C . Macromolecules , 2007 . 40 ( 25 ): 9026 - 9031.
Minakov A A, van Herwaarden A W, Wien W, Wurm A, Schick C . Thermochim Acta , 2007 . 461 ( 1-2 ): 96 - 106.
Minakov A A, Wurm A, Schick C . Eur Phys J E , 2007 . 23 ( 1 ): 43 - 53.
Zhuravlev E, Schmelzer J W P, Wunderlich B, Schick C . Polymer , 2011 . 52 ( 9 ): 1983 - 1997.
Mileva D, Androsch R, Zhuravlev E, Schick C, Wunderlich B . Polymer , 2012 . 53 ( 2 ): 277 - 282.
Massa M V, Carvalho J L, Dalnoki-Veress K . Eur Phys J , 2003 . 12 111 - 117.
Evgeny Z, Jürn W P, Alexander S . Cryst Growth Des , 2015 . 15 786 - 798.
Rhoades AM, Williams J L, Androsch R . Thermochim Acta , 2014 . 112 - 120.
Mollova A, Androsch R, Mileva D, Schick C, Benhamida A . Macromolecules , 2013 . 46 828 - 835.
de Santis F, Adamovsky S, Titomanlio G, Schick C . Macromolecules , 2007 . 40 9026 - 9031.
Pyda M, Nowak-Pyda E, Heeg J, Huth H, Minakov A, Di Lorenzo M L, Schick C, Wunderlich B . Polym Sci , 2006 . 44 1364 - 1377.
Zhuravlev E, Schmelzer J W P, Wunderlich B, Schick C . Polymer , 2011 . 52 1983 - 1997.
0
浏览量
16
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构