浏览全部资源
扫码关注微信
教育部高分子合成与功能构造重点实验室 浙江大学高分子科学与工程学系 杭州 310027
E-mail: jijian@zju.edu.cn Jian Ji, E-mail: jijian@zju.edu.cn
纸质出版日期:2018-8,
收稿日期:2018-2-1,
修回日期:2018-2-12,
扫 描 看 全 文
王寅, 王海波, 韩海杰, 贾凡, 金桥, 计剑. 基于主客体模块组装的多功能药物载体的研究[J]. 高分子学报, 2018,0(8):1089-1096.
Yin Wang, Hai-bo Wang, Hai-jie Han, Fan Jia, Qiao Jin, Jian Ji. Construction of Multifunctional Drug Nanocarriers by Modularized Host-Guest Self-assembly[J]. Acta Polymerica Sinica, 2018,0(8):1089-1096.
王寅, 王海波, 韩海杰, 贾凡, 金桥, 计剑. 基于主客体模块组装的多功能药物载体的研究[J]. 高分子学报, 2018,0(8):1089-1096. DOI: 10.11777/j.issn1000-3304.2018.18035.
Yin Wang, Hai-bo Wang, Hai-jie Han, Fan Jia, Qiao Jin, Jian Ji. Construction of Multifunctional Drug Nanocarriers by Modularized Host-Guest Self-assembly[J]. Acta Polymerica Sinica, 2018,0(8):1089-1096. DOI: 10.11777/j.issn1000-3304.2018.18035.
基于
β
-环糊精和胆固醇之间的主客体识别作用,通过对主客体分子的设计,构筑模块化的组装基元;通过主客体分子组装,将具有靶向功能的乳糖酸、成像功能的异硫氰酸荧光素和治疗作用的阿霉素引入同一超分子聚合物前药胶束中,制备得到多功能的纳米药物传递系统. 研究结果表明,具有不同功能的模块基元可通过超分子主客体组装在水中自组装成一定尺寸的前药胶束,并通过二维
1
H NOESY谱证明了主客体作用的发生. 该前药胶束具有pH值响应的药物释放行为,在细胞内涵体/溶酶体酸性环境下药物释放速率显著加快. 用荧光显微镜和流式细胞仪对此聚合物前药胶束的细胞内吞行为进行了研究. 在乳糖酸受体介导作用下,聚合物前药胶束能在肿瘤细胞内有效富集,并同时观察到阿霉素和异硫氰酸荧光素的荧光,用以跟踪载体在细胞内的位置. MTT的结果进一步表明,该前药胶束能有效地抑制癌细胞的增殖.
Unlike the crude study conducted at the beginning of nanomedicine
researchers have devoted more efforts to developing nanosystems with elaborated structures and multifunctions owing to the fact that the tumor microenvironment is complicated. However
it is still a great challenge to prepare these nanoplatforms for drug delivery. In this study
multifunctional prodrug nanocarriers were fabricated by the modularized host-guest self-assembly between cholesterol and
β
-cyclodextrin. The targeted ligand lactobionic acid (LBA)
fluorescent probe fluoresceine isothiocyanate (FITC)
and chemtherapeutic drug doxorubicin (DOX) were integrated into the multifunctional supramolecualr drug nanocarriers. The host-guest interaction between Chol-PEG and
β
-CD-hydrazone-DOX was confirmed by 2D
1
H NOESY spectrum. The modularized functional building blocks could self-assemble into micelles with a diameter of 20 nm. The supramolecular nanocarriers showed pH-sensitive drug release behavior. The release of DOX can be greatly accelerated in acidic endo/lysosomal pH. The internalization of the supramolecular drug nanocarriers by HepG2 cells was studied by fluorescence microscopy and flow cytometry. The nanocarriers can be well taken up by cancer cells. Due to the targeting ability of LBA
the internalization of the nanocarriers can be greatly inhibited if the cells are pre-treated by free LBA. At the same time
the fluorescence of FITC can be clearly observed intracellularly
which can be used to track the sub-cellular location of the drug nanocarriers. Finally
the cytotoxicity of the drug nanocarriers was investigaed by MTT assay. With the HepG2 cells pre-treated with free LBA
the cytotoxicity of the drug nanocarriers was significantly reduced
most probably owing to the unsatisfactory cell uptake. The concentration-dependent cytotoxicity toward HepG2 cells was also observed. Therefore
the integration of target ligand and imaging ligand have endowed the nanocarriers with targeted theranostic property. More importantly
since the modularized host-guest self-assembly is dynamically tunable
the percentage of functional ligands could be easily optimized to achieve a better outcome. Such multifunctional prodrug nanocarriers fabricated by modularized host-guest self-assembly may have great potential in drug delivery.
主客体作用超分子药物传递成像
Host-guest interactionsSupramoleculeDrug deliveryImaging
Hare J I, Lammers T, Ashford M B, Puri S, Storm G, Barry S T . Adv Drug Deliv Rev , . 2017 . 108 25 - 38 . DOI:10.1016/j.addr.2016.04.025http://doi.org/10.1016/j.addr.2016.04.025 .
Allen T M, Cullis P R . Adv Drug Deliv Rev , . 2013 . 65 ( 1 ): 36 - 48 . DOI:10.1016/j.addr.2012.09.037http://doi.org/10.1016/j.addr.2012.09.037 .
Peer D, Karp J M, Hong S, FaroKHzad O C, Margalit R, Langer R . Nat Nanotechnol , . 2007 . 2 ( 12 ): 751 - 760 . DOI:10.1038/nnano.2007.387http://doi.org/10.1038/nnano.2007.387 .
Duncan R . Nat Rev Cancer , . 2006 . 6 ( 9 ): 688 - 701 . DOI:10.1038/nrc1958http://doi.org/10.1038/nrc1958 .
Xie L S, Wang G H, Zhou H, Zhang F, Guo Z D, Liu C, Zhang X Z, Zhu L . Biomaterials , . 2016 . 103 219 - 228 . DOI:10.1016/j.biomaterials.2016.06.058http://doi.org/10.1016/j.biomaterials.2016.06.058 .
Han H J, Valdeperez D, Jin Q, Yang B, Li Z H, Wu Y L, Pelaz B, Parak W J, Ji J . ACS Nano , . 2017 . 11 ( 2 ): 1281 - 1291 . DOI:10.1021/acsnano.6b05541http://doi.org/10.1021/acsnano.6b05541 .
Liong M, Lu J, Kovochich M, Xia T, Ruehm S G, Nel A E, Tamanoi F, Zink J I . ACS Nano , . 2008 . 2 ( 5 ): 889 - 896 . DOI:10.1021/nn800072thttp://doi.org/10.1021/nn800072t .
Zhou Z J, Wang Y T, Yan Y, Zhang Q, Cheng Y Y . ACS Nano , . 2016 . 10 ( 4 ): 4863 - 4872 . DOI:10.1021/acsnano.6b02058http://doi.org/10.1021/acsnano.6b02058 .
Chen W H, Lei Q, Luo G F, Jia H Z, Hong S, Liu Y X, Cheng Y J, Zhang X Z . ACS Appl Mater Interfaces , . 2015 . 7 ( 31 ): 17171 - 17180 . DOI:10.1021/acsami.5b04031http://doi.org/10.1021/acsami.5b04031 .
Fu P P, Xia Q S, Hwang H M, Ray P C, Yu H T . J Food Drug Anal , . 2014 . 22 ( 1 ): 64 - 75 . DOI:10.1016/j.jfda.2014.01.005http://doi.org/10.1016/j.jfda.2014.01.005 .
Wang S Y, Kim G, Lee Y E K, Hah H J, Ethirajan M, Pandey R K, Kopelman R . ACS Nano , . 2012 . 6 ( 8 ): 6843 - 6851 . DOI:10.1021/nn301633mhttp://doi.org/10.1021/nn301633m .
Chen Y J, Li Z H, Wang H B, Wang Y, Han H J, Jin Q, Ji J . ACS Appl Mater Interfaces , . 2016 . 8 ( 11 ): 6852 - 6858 . DOI:10.1021/acsami.6b00251http://doi.org/10.1021/acsami.6b00251 .
Han H J, Wang H B, Chen Y J, Li Z H, Wang Y, Jin Q, Ji J . Nanoscale , . 2016 . 8 ( 1 ): 283 - 291 . DOI:10.1039/C5NR06734Khttp://doi.org/10.1039/C5NR06734K .
Yang B, Dong X, Lei Q, Zhuo R X, Feng J, Zhang X Z . ACS Appl Mater Interfaces , . 2015 . 7 ( 39 ): 22084 - 22094 . DOI:10.1021/acsami.5b07549http://doi.org/10.1021/acsami.5b07549 .
Liu J, Tan C S Y, Yu Z Y, Lan Y, Abell C, Scherman O A . Adv Mater , . 2017 . 29 ( 10 ): 1604951 DOI:10.1002/adma.201604951http://doi.org/10.1002/adma.201604951 .
Liu J, Lan Y, Yu Z Y, Tan C S Y, Parker R M, Abell C, Scherman O A . Acc Chem Res , . 2017 . 50 ( 2 ): 208 - 217 . DOI:10.1021/acs.accounts.6b00429http://doi.org/10.1021/acs.accounts.6b00429 .
Zhou J, Yu G C, Huang F H . Chem Soc Rev , . 2017 . 46 ( 22 ): 7021 - 7053 . DOI:10.1039/C6CS00898Dhttp://doi.org/10.1039/C6CS00898D .
Yu G C, Jie K C, Huang F H . Chem Rev , . 2015 . 115 ( 15 ): 7240 - 7303 . DOI:10.1021/cr5005315http://doi.org/10.1021/cr5005315 .
Liu G Y, Jin Q A, Liu X S, Lv L P, Chen C J, Ji J A . Soft Matter , . 2011 . 7 ( 2 ): 662 - 669 . DOI:10.1039/C0SM00708Khttp://doi.org/10.1039/C0SM00708K .
Wang Y, Wang H B, Chen Y J, Liu X S, Jin Q, Ji J . Chem Commun , . 2013 . 49 ( 64 ): 7123 - 7125 . DOI:10.1039/c3cc43687jhttp://doi.org/10.1039/c3cc43687j .
Wang Y, Wang H B, Chen Y J, Liu X S, Jin Q, Ji J . Colloid Surf B , . 2014 . 121 189 - 195 . DOI:10.1016/j.colsurfb.2014.06.024http://doi.org/10.1016/j.colsurfb.2014.06.024 .
Wang Y, Wang H B, Liu G Y, Liu X S, Jin Q, Ji J . Macromol Biosci , . 2013 . 13 ( 8 ): 1084 - 1091 . DOI:10.1002/mabi.201300052http://doi.org/10.1002/mabi.201300052 .
van de Manakker F, van der Pot M, Vermonden T, van Nostrum C F, Hennink W E . Macromolecules , . 2008 . 41 ( 5 ): 1766 - 1773 . DOI:10.1021/ma702607rhttp://doi.org/10.1021/ma702607r .
Jiang H M, Zhang S F, Sui Q . Asian J Chem , . 2011 . 23 ( 9 ): 3783 - 3786.
Ringsdorf H . J Polym Sci Polym Symp , . 1975 . 51 135 - 153.
Qiu Wenxiu(邱文秀), Cheng Han(程翰), Zhang Xianzheng(张先正), Zhuo Renxi(卓仁禧). Acta Polymerica Sinica(高分子学报), 2018, (1): 32-44
0
浏览量
17
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构