浏览全部资源
扫码关注微信
西南石油大学材料科学与工程学院 成都 610500
E-mail: polychem@swpu.edu.cn Chun-xia Zhao, E-mail: polychem@swpu.edu.cn
E-mail: yuntaoli@swpu.edu.cn Yun-tao Li, E-mail: yuntaoli@swpu.edu.cn
纸质出版日期:2018-10,
收稿日期:2018-2-2,
修回日期:2018-3-29,
扫 描 看 全 文
赵春霞, 赵玲, 何晓佳, 苟浩澜, 李云涛. 芴基聚磷腈微球的制备及其对苯并噁嗪树脂阻燃性能的影响[J]. 高分子学报, 2018,0(10):1336-1344.
Chun-xia Zhao, Ling Zhao, Xiao-jia He, Hao-lan Gou, Yun-tao Li. Effects of Fluorenyl Polyphosphazene Microspheres on the Flame Retardant Properties of Polybenzoxazine Resins[J]. Acta Polymerica Sinica, 2018,0(10):1336-1344.
赵春霞, 赵玲, 何晓佳, 苟浩澜, 李云涛. 芴基聚磷腈微球的制备及其对苯并噁嗪树脂阻燃性能的影响[J]. 高分子学报, 2018,0(10):1336-1344. DOI: 10.11777/j.issn1000-3304.2018.18042.
Chun-xia Zhao, Ling Zhao, Xiao-jia He, Hao-lan Gou, Yun-tao Li. Effects of Fluorenyl Polyphosphazene Microspheres on the Flame Retardant Properties of Polybenzoxazine Resins[J]. Acta Polymerica Sinica, 2018,0(10):1336-1344. DOI: 10.11777/j.issn1000-3304.2018.18042.
以六氯环三磷腈(HCCP)和4
4′-(9-芴)二苯酚为原料,通过超声辅助沉淀聚合制备芴基聚磷腈(PZFP)微球,并将其用于双酚A型苯并噁嗪树脂(PBa)的阻燃改性. 热重分析仪(TGA)、锥型量热仪(CONE)和动态热机械分析仪(DMA)测试结果表明,PZFP可提高PBa热降解后残留量,并能显著降低热释放速率(HRR),延长点燃时间(TTI),提高火灾性能指数(FPI),起到良好的阻燃作用. 其中,PBa/PZFP-10%具有最佳阻燃性能. 与纯PBa相比,PBa/PZFP-10%的HRR值由566 kW/m
2
降低到214 kW/m
2
,玻璃化转变温度(
T
g
)和储能模量略有提高. 纯PBa和PBa/PZFP-10%的
T
g
分别为222 和226 °C. PBa/PZFP-10%复合材料的CONE测试后炭层扫描电镜(SEM)和热重-红外联用(TG-FTIR)结果显示,PZFP在PBa燃烧过程中,可以促进PBa主链和侧基交联成炭,形成外表面致密和内部多孔结构的凝聚相;PZFP本身热解产物部分参与凝聚相形成过程,仍有少量逸到气相中阻碍或终止气相燃烧循环. PZFP在PBa基体中起到凝聚相和气相阻燃机理协同作用.
Fluorenyl polyphosphazene (PZFP) microspheres were facilely prepared through a one-step precipitation copolymerization of hexachlorocyclotriphosphazene (HCCP) and 4
4′-(9-fluorenylidene)diphenol under ultrasonic. PZFP microspheres were incorporated into polybenzoxazine resins to improve the flame properties of the polymers. The results of thermogravimetric analysis (TGA)
cone calorimeter (CONE) and dynamic thermal mechanical analysis (DMA) showed that incorporation of PZFP microspheres enhanced the char residues amount of PBa during thermal degradation process
reduced the heat release rate (HRR)
delayed the time to ignition (TTI) and increased the fire performance index (FPI) of PBa in fire. Interestingly
PBa/PZFP-10% showed the relatively best flame retardant properties among a series of PBa/PZFP composites with different PZFP contents. In comparison to pure PBa
the HRR value in the composite PBa/PZFP-10% was reduced to 214 kW·m
−2
from 566 kW·m
−2
for pure PBa
and FPI value was enhanced to 0.243 from 0.087. The glass transition temperature (
T
g
) and storage modules of PBa/PZFP-10% were increased slightly
with the introduction of 10% PZFP microspheres. The
T
g
of PBa and PBa/PZFP-10% was 222 and 226 °C
respectively. It is believed that PZFP microspheres offered PBa resins good flame retardant properties
without affecting the application temperature of PBa. The char residue analysis using scanning electron microscopy (SEM) suggested the formation of high-quality char layer with compact outer surfaces and polyphorous inner structure. The volatile products formed in the thermal degradation process of PBa and PBa/PZFP composites were detected by a TGA-Fourier transform infrared spectrometer (TGA-FTIR). The improved flame retardancy of PBa/PZFP composites was mainly attributed to a combination of the greatly increased melt viscosity of PBa and matrix fast swelling due to the pyrolytic gases. Additionally
PZFP microspheres was found to greatly reduce the amount of pyrolytic gases containing N―H and ―C=C=C― groups. Instead
it released phosphorous-containing species to achieve flame retardancy in the gas phase. PZFP microspheres contributed a synergistic condensed phase and gas phase flame retardant mechanism for PBa resins.
芴基聚磷腈微球阻燃苯并噁嗪树脂锥型量热分析
Fluorenyl polyphosphazene microspheresFlame retardancyPolybenzoxazine resinsCone calorimeter
Zhang W K, Gao X X, Yu L L, Ren Y R . Polym Int , 2017 . 66 908 - 915 . DOI:10.1002/pi.2017.66.issue-6http://doi.org/10.1002/pi.2017.66.issue-6 .
Liu C Z, Sun M M, Zhang B . J Appl Polym Sci , 2017 . 44547 1 - 9.
Yan H Q, Sun C, Fang Z P . Polymer , 2016 . 97 418 - 427 . DOI:10.1016/j.polymer.2016.05.053http://doi.org/10.1016/j.polymer.2016.05.053 .
Liao Y L, Hu C C, Lai J Y, Liu Y L . J Membr Sci , 2017 . 531 10 - 15 . DOI:10.1016/j.memsci.2017.02.039http://doi.org/10.1016/j.memsci.2017.02.039 .
Rimdusit S, Thamprasom N, Suppakarn N, Jubsip C, Takeichi T, Tiptipakorn S . J Appl Polym Sci , 2013 . 130 1074 - 1083 . DOI:10.1002/app.39248http://doi.org/10.1002/app.39248 .
Gao S, Liu Y, Feng S Y . Polym Chem , 2017 . 55 2390 - 2396 . DOI:10.1002/pola.v55.14http://doi.org/10.1002/pola.v55.14 .
He Da(何达), Zhao Chunxia(赵春霞), Wang Yi(王毅), Li Yuntao(李云涛), Li Shuliang(李姝靓), Yue Jie(岳杰) . 高分子学报 , 2017 . ( 5 ): 858 - 866.
. Acta Polymerica Sinica , 2017 . ( 5 ): 858 - 866.
Zhou X, Qiu S L, Xing, W Y . ACS Appl Mater Interfaces , 2017 . 9 29147 - 29156 . DOI:10.1021/acsami.7b08878http://doi.org/10.1021/acsami.7b08878 .
Chen Dakai(陈大凯), Liang Huan(梁焕), Lu Yin(陆茵), An Quanfu(安全福) . 高分子学报 , 2008 . ( 8 ): 747 - 752 . DOI:10.3321/j.issn:1000-3304.2008.08.003http://doi.org/10.3321/j.issn:1000-3304.2008.08.003 .
. Acta Polymerica Sinica , 2008 . ( 8 ): 747 - 752 . DOI:10.3321/j.issn:1000-3304.2008.08.003http://doi.org/10.3321/j.issn:1000-3304.2008.08.003 .
Zhang J W, Huang X B, Fu J W, Huang W Y . Mater Chem Phys , 2010 . 121 511 - 518 . DOI:10.1016/j.matchemphys.2010.02.016http://doi.org/10.1016/j.matchemphys.2010.02.016 .
Wei X, Zhang G C, Zhou L S, Li J W . Appl Surf Sci , 2017 . 419 744 - 752 . DOI:10.1016/j.apsusc.2017.04.236http://doi.org/10.1016/j.apsusc.2017.04.236 .
Qiu S L, Wang X, Yu B . J Hazard Mater , 2017 . 325 327 - 339 . DOI:10.1016/j.jhazmat.2016.11.057http://doi.org/10.1016/j.jhazmat.2016.11.057 .
Jin W Q, Yuan L, Liang G Z . ACS Appl Mater Interfaces , 2014 . 6 14931 - 14944 . DOI:10.1021/am502364khttp://doi.org/10.1021/am502364k .
Qu T G, Yang N, Hou J . ACS Appl Mater Interfaces , 2017 . 9 29147 - 29156 . DOI:10.1021/acsami.7b08878http://doi.org/10.1021/acsami.7b08878 .
Chen C, Zhu X Y, Gao Q L, Fang F, Huang X J . Appl Surf Sci , 2016 . 387 1029 - 1036 . DOI:10.1016/j.apsusc.2016.06.116http://doi.org/10.1016/j.apsusc.2016.06.116 .
Yang R, Wang B, Han X F, Ma B B, Li J C . Polym Degrad Stab , 2017 . 144 62 - 69 . DOI:10.1016/j.polymdegradstab.2017.08.008http://doi.org/10.1016/j.polymdegradstab.2017.08.008 .
Li Guixun(李贵勋), Cao Shaokui(曹少魁), Wang Wanjie(王万杰), Cao Yanxia(曹艳霞), Wang Jingwu(王经武) . 高分子材料科学与工程 , 2014 . 30 72 - 76.
. Polymer Materials Science and Engineering , 2014 . 30 72 - 76.
Qian X D, Song L, Yu B, Wang B B, Yuan B H, Shi Y Q, Hu Y, Yuen R K . J Mater Chem A , 2013 . 1 6822 - 6830 . DOI:10.1039/c3ta10416hhttp://doi.org/10.1039/c3ta10416h .
Ménard R, Negrell C, Ferry L, Sonnier R, David G . Polym Degrad Stab , 2015 . 120 300 - 312 . DOI:10.1016/j.polymdegradstab.2015.07.015http://doi.org/10.1016/j.polymdegradstab.2015.07.015 .
0
浏览量
28
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构